题目内容

已知a、b、c是实数,试比较a2+b2+c2与ab+bc+ca的大小.
考点:不等式比较大小
专题:不等式的解法及应用
分析:从不等式的左边入手,左边对应的代数式的二倍,分别写成两两相加的形式,在三组相加的式子中分别用均值不等式,整理成最简形式,得到右边的2倍,两边同时除以2,得到结果.
解答: 解:∵a2+b2+c2-(ab+bc+ca)=
1
2
[(a-b)2+(b-c)2+(c-a)2]≥0,
当且仅当a=b=c时取等号,∴a2+b2+c2≥ab+bc+ca.
点评:本题考查均值不等式的应用,考查不等式的证明方法,是一个基础题,这种题目常常考虑分拆后利用基本不等式,因为题目分拆后才符合均值不等式的表现形式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网