题目内容
设随机变量X的分布列为P(X=k)=
(k=1,2,3,…n),求E(X)和D(X).
| 1 |
| n |
考点:离散型随机变量及其分布列
专题:概率与统计
分析:由已知得E(X)=(1+2+3+…+n)×
=
×
=
,E(X22)=(122+22+…+n2)×
=
×
=
,由DX=E(X2)-(EX)2,能求出E(X)和D(X).
| 1 |
| n |
| n(n+1) |
| 2 |
| 1 |
| n |
| n+1 |
| 2 |
| 1 |
| n |
| n(n+1)(2n+1) |
| 6 |
| 1 |
| n |
| (n+1)(2n+1) |
| 6 |
解答:
解:∵P(X=k)=
(k=1,2,3,…n),
∴E(X)=(1+2+3+…+n)×
=
×
=
,
E(X2)=(122+22+…+n2)×
=
×
=
,
∴DX=E(X2)-(EX)2=
-
=
.
| 1 |
| n |
∴E(X)=(1+2+3+…+n)×
| 1 |
| n |
| n(n+1) |
| 2 |
| 1 |
| n |
| n+1 |
| 2 |
E(X2)=(122+22+…+n2)×
| 1 |
| n |
| n(n+1)(2n+1) |
| 6 |
| 1 |
| n |
| (n+1)(2n+1) |
| 6 |
∴DX=E(X2)-(EX)2=
| (n+1)(2n+1) |
| 6 |
| (n+1)2 |
| 4 |
| n2-1 |
| 12 |
点评:本题考查随机变量的数学期望和方差的求法,是中档题,解题时要认真审题,注意方差计算公式的合理运用.
练习册系列答案
相关题目