题目内容

已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令bn=
4
anan+1
,求数列{bn}的前n项和.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件推导出a2=4,d=a2-a1=2,由此能求出an
(2)bn=
4
anan+1
=
1
n
-
1
n+1
,由此利用裂项求和法能求出数列{bn}的前n项和.
解答: (本小题满分13分)
解:(1)∵{an}是等差数列,
∴a1+a2+a3=3a2=12,
∴a2=4,
设公差为d,d=a2-a1=2,
∴an=a1+(n-1)d=2+2(n-1)=2n.…(6分)
(2)∵an=2n,
∴bn=
4
anan+1
=
4
2n×2(n+1)
=
1
n(n+1)
=
1
n
-
1
n+1

Sn =1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1
.…(13分)
点评:本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网