ÌâÄ¿ÄÚÈÝ
ÒÑÖªÊýÁÐA£ºx1£¬x2£¬x3£¬¡xn£¬Âú×ãxi¡Ê{0£¬1}£¨i=1£¬2£¬3£¬¡£¬n£©£®¶¨Òå±ä»»T£¨A£©£ºT½«ÊýÁÐAÖÐÔÓеÄÿ¸ö¡°1¡±¶¼±ä³É¡°0£¬1¡±£¬ÔÓеÄÿ¸ö¡°0¡±¶¼±ä³É¡°1£¬0¡±£¬Ë³Ðò±£³Ö²»±ä£®ÈôÊýÁÐA0£º1£¬0£¬Ak+1=T£¨Ak£©£¨k=0£¬1£¬2£¬¡£©£¬¹æ¶¨AkÖÐÁ¬ÐøÁ½Ïî¶¼ÊÇ1µÄÊý¶Ô£¨1£¬1£©µÄ¸öÊýΪak£¬Á¬ÐøÁ½ÏîÊÇ1£¬0µÄÓÐÐòÊý¶Ô£¨1£¬0£©µÄ¸öÊýΪbk£®
£¨1£©ÇóÊýÁÐA1£¬A2£»
£¨2£©·Ö±ðд³öak+1Óëbk£¬bk+1ÓëakÂú×ãµÄ¹ØÏµÊ½£¨Ö»Ðèд³ö½á¹û£©£»
£¨3£©ÇóakµÄ±í´ïʽ£®
£¨1£©ÇóÊýÁÐA1£¬A2£»
£¨2£©·Ö±ðд³öak+1Óëbk£¬bk+1ÓëakÂú×ãµÄ¹ØÏµÊ½£¨Ö»Ðèд³ö½á¹û£©£»
£¨3£©ÇóakµÄ±í´ïʽ£®
¿¼µã£ºÊýÁеÝÍÆÊ½
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÒÑÖªÊýÁÐA0£º1£¬0£¬Ak+1=T£¨Ak£©£¬µ±k=0ʱ£¬A1=T£¨A0£©£¬¸ù¾Ý±ä»»¿ÉµÃ£ºA1£®A2£®
£¨2£©ÓÉA0£º1£¬0£¬¿ÉµÃb0=1£¬a0=0£»ÓÉA1£º0£¬1£¬1£¬0£¬¿ÉµÃb1=1£¬a1=1£»ÒÀ´ËÀàÍÆ¿ÉµÃ£ºb2=3£¬a2=1£»b3=5£¬a3=3£»b4=11£¬a4=5£®¡£¬ÓÉÒÔÉϹ۲쵽£ºak+1=bk£¬bk+1=ak+2k£®ÆäÖÐb0=1£¬a0=0£®k¡ÊN£®
£¨3£©ÓÉ£¨1£©¿ÉµÃ£ºak+1=bk£¬bk+1=ak+2k£®ÆäÖÐb0=1£¬a0=0£®k¡ÊN£®¿ÉµÃak+2=ak+2k£¬¶Ôk·ÖÆæÊýÓëżÊýÌÖÂÛ¼´¿ÉµÃ³ö£®
£¨2£©ÓÉA0£º1£¬0£¬¿ÉµÃb0=1£¬a0=0£»ÓÉA1£º0£¬1£¬1£¬0£¬¿ÉµÃb1=1£¬a1=1£»ÒÀ´ËÀàÍÆ¿ÉµÃ£ºb2=3£¬a2=1£»b3=5£¬a3=3£»b4=11£¬a4=5£®¡£¬ÓÉÒÔÉϹ۲쵽£ºak+1=bk£¬bk+1=ak+2k£®ÆäÖÐb0=1£¬a0=0£®k¡ÊN£®
£¨3£©ÓÉ£¨1£©¿ÉµÃ£ºak+1=bk£¬bk+1=ak+2k£®ÆäÖÐb0=1£¬a0=0£®k¡ÊN£®¿ÉµÃak+2=ak+2k£¬¶Ôk·ÖÆæÊýÓëżÊýÌÖÂÛ¼´¿ÉµÃ³ö£®
½â´ð£º
½â£º£¨1£©ÒÑÖªÊýÁÐA0£º1£¬0£¬Ak+1=T£¨Ak£©£¬
µ±k=0ʱ£¬A1=T£¨A0£©£¬
¸ù¾Ý±ä»»¿ÉµÃ£ºA1=0£¬1£¬1£¬0£®
A2=1£¬0£¬0£¬1£¬0£¬1£¬1£¬0£®
£¨2£©¡ßA0£º1£¬0£¬¡àb0=1£¬a0=0£»
¡àA1£º0£¬1£¬1£¬0£¬¡àb1=1£¬a1=1£»
A2£º1£¬0£¬0£¬1£¬0£¬1£¬1£¬0£®¡àb2=3£¬a2=1£»
A3£º0£¬1£¬1£¬0£¬1£¬0£¬0£¬1£¬1£¬0£¬0£¬1£¬0£¬1£¬1£¬0£¬b3=5£¬a3=3£»
A4£º1£¬0£¬0£¬1£¬0£¬1£¬1£¬0£¬0£¬1£¬1£¬0£¬1£¬0£¬0£¬1£¬0£¬1£¬1£¬0£¬1£¬0£¬0£¬1£¬1£¬0£¬0£¬1£¬0£¬1£¬1£¬0£®¡àb4=11£¬a4=5£®
¡£¬
ÓÉÒÔÉϹ۲쵽£ºak+1=bk£¬bk+1=ak+2k£®ÆäÖÐb0=1£¬a0=0£®k¡ÊN£®
£¨3£©ÓÉ£¨1£©¿ÉµÃ£ºak+1=bk£¬bk+1=ak+2k£®ÆäÖÐb0=1£¬a0=0£®k¡ÊN£®
¿ÉµÃak+2=ak+2k£¬
µ±kΪżÊýʱ£¬a2=a0+20£¬a4=a2+22£¬a6=a4+24£¬¡£¬a2n=a2n-2+22n-2£¬
¡àa2n=a0+1+22+¡+22n-2=0+1+22+¡+22n-2=
=
(4n-1)£¬
¡àa2n=
(4n-1)£®n¡ÊN£®
µ±kÎªÆæÊýʱ£¬a3=a1+2£¬a5=a3+23£¬¡£¬a2n-1=a2n-3+22n-3£¬
¡àa2n-1=a1+2+23+¡+22n-3=
£®
¡àak=
£®
µ±k=0ʱ£¬A1=T£¨A0£©£¬
¸ù¾Ý±ä»»¿ÉµÃ£ºA1=0£¬1£¬1£¬0£®
A2=1£¬0£¬0£¬1£¬0£¬1£¬1£¬0£®
£¨2£©¡ßA0£º1£¬0£¬¡àb0=1£¬a0=0£»
¡àA1£º0£¬1£¬1£¬0£¬¡àb1=1£¬a1=1£»
A2£º1£¬0£¬0£¬1£¬0£¬1£¬1£¬0£®¡àb2=3£¬a2=1£»
A3£º0£¬1£¬1£¬0£¬1£¬0£¬0£¬1£¬1£¬0£¬0£¬1£¬0£¬1£¬1£¬0£¬b3=5£¬a3=3£»
A4£º1£¬0£¬0£¬1£¬0£¬1£¬1£¬0£¬0£¬1£¬1£¬0£¬1£¬0£¬0£¬1£¬0£¬1£¬1£¬0£¬1£¬0£¬0£¬1£¬1£¬0£¬0£¬1£¬0£¬1£¬1£¬0£®¡àb4=11£¬a4=5£®
¡£¬
ÓÉÒÔÉϹ۲쵽£ºak+1=bk£¬bk+1=ak+2k£®ÆäÖÐb0=1£¬a0=0£®k¡ÊN£®
£¨3£©ÓÉ£¨1£©¿ÉµÃ£ºak+1=bk£¬bk+1=ak+2k£®ÆäÖÐb0=1£¬a0=0£®k¡ÊN£®
¿ÉµÃak+2=ak+2k£¬
µ±kΪżÊýʱ£¬a2=a0+20£¬a4=a2+22£¬a6=a4+24£¬¡£¬a2n=a2n-2+22n-2£¬
¡àa2n=a0+1+22+¡+22n-2=0+1+22+¡+22n-2=
| 4n-1 |
| 4-1 |
| 1 |
| 3 |
¡àa2n=
| 1 |
| 3 |
µ±kÎªÆæÊýʱ£¬a3=a1+2£¬a5=a3+23£¬¡£¬a2n-1=a2n-3+22n-3£¬
¡àa2n-1=a1+2+23+¡+22n-3=
| 2¡Á4n-1+1 |
| 3 |
¡àak=
|
µãÆÀ£º±¾Ì⿼²éÁËÊýÁб任¡¢µÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½£¬¿¼²éÁ˹۲ì·ÖÎö²ÂÏë¹éÄÉÍÆÀíµÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿