ÌâÄ¿ÄÚÈÝ
10£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌÊÇp-2cos¦È+2sin¦È=0£¬ÒÔ¼«µãΪƽ¶¥Ö±½Ç×ø±êϵµÄԵ㣬¼«ÖáΪxÖáµÄÕý°ëÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨rΪ²ÎÊý£©£®£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó|AB|µÄÖµ£®
·ÖÎö £¨1£©¶Ô¼«×ø±êÁ½±ßͬ³Ë¦ÑµÃµ½Ö±½Ç×ø±ê·½³Ì£¬½«²ÎÊý·½³ÌÁ½Ê½Ïà¼õÏûÈ¥²ÎÊýµÃµ½ÆÕͨ·½³Ì£»
£¨2£©°ÑÖ±Ïß²ÎÊý·½³Ì´úÈëÇúÏ߯Õͨ·½³Ì£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒåºÍ¸ùÓëϵÊýµÃ¹ØÏµ½â³ö|AB|£®
½â´ð ½â£º£¨1£©¡ßp-2cos¦È+2sin¦È=0£¬¡à¦Ñ2-2¦Ñcos¦È+2¦Ñsin¦È=0£®
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌÊÇx2+y2-2x+2y=0£¬¼´£¨x-1£©2+£¨y+1£©2=2£®
¡ß$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬¡ày-x=$\frac{1}{2}$£®¡àÖ±ÏßlµÄÆÕͨ·½³ÌÊÇy-x=$\frac{1}{2}$£®
£¨2£©°Ñ$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëx2+y2-2x+2y=0µÃ4t2+2$\sqrt{2}$t-3=0£¬
¡àt1+t2=-$\frac{\sqrt{2}}{2}$£¬t1t2=-$\frac{3}{4}$£®
¡à|AB|=|t1-t2|=$\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}$=$\frac{\sqrt{14}}{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì£¬²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒ壬ÊôÓÚ»ù´¡Ì⣮
| A£® | ${£¨\frac{b}{a}£©^9}={b^9}{a^{\frac{1}{9}}}$ | B£® | $\root{12}{{{{£¨-5£©}^4}}}=\root{3}{-5}$ | C£® | $\root{3}{{{a^3}+{b^3}}}={£¨a+b£©^{\frac{3}{4}}}$ | D£® | $\sqrt{\root{3}{9}}=\root{3}{3}$ |
| A£® | 16 | B£® | 28 | C£® | 56 | D£® | 64 |