题目内容
已知x,y满足条件
,则z=x+2y的最小值为 .
|
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最小值.
解答:
解:作出不等式对应的平面区域,
由z=x+2y,得y=-
x+
,
平移直线y=-
x+
,由图象可知当直线y=-
x+
经过点D时,
直线y=-
x+
的截距最小,此时z最小.
由
,解得
,即D(0,-1)
此时z的最小值为z=0+2×(-1)=-2,
故答案为:-2.
由z=x+2y,得y=-
| 1 |
| 2 |
| z |
| 2 |
平移直线y=-
| 1 |
| 2 |
| z |
| 2 |
| 1 |
| 2 |
| z |
| 2 |
直线y=-
| 1 |
| 2 |
| z |
| 2 |
由
|
|
此时z的最小值为z=0+2×(-1)=-2,
故答案为:-2.
点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
练习册系列答案
相关题目
R表示实数集,集合M={x∈R|0<log3x<1},N={x∈R|(x-1)(x-2)<0},则( )
| A、M∩N=M |
| B、M∪N=N |
| C、(∁RN)∩M=∅ |
| D、(∁RM)∩N=∅ |
下列四个函数:①f(x)=x2-2x;②f(x)=sinx,0≤x≤2π;③f(x)=2x+x;④f(x)=log2(2x-1),x>
.其中,能使f(
)≤
[f(x1)+f(x2)]恒成立的函数的个数是( )
| 1 |
| 2 |
| x1+x2 |
| 2 |
| 1 |
| 2 |
| A、1 | B、2 | C、3 | D、4 |
(1)当x=x0时,函数f(x)=
取得最大值,则cos2x0的值为( )
| cosx | ||||
sin4
|
| A、-1 | ||
B、-
| ||
| C、0 | ||
| D、1 |