题目内容
16.已知△ABC的内角A、B、C所对的边的长分别是a、b、c.若a2+ab+b2-c2=0,则角C的大小是( )| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
分析 利用余弦定理表示出cosC,将已知等式变形后代入求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数.
解答 解:△ABC中,∵a2+ab+b2-c2=0,即a2+b2-c2=-ab,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{-ab}{2ab}$=-$\frac{1}{2}$,
∵C为三角形的内角,
∴C=120°.
故选:C.
点评 此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键,属于基础题.
练习册系列答案
相关题目
7.已知i为虚数单位,复数z1=1+i,z2=1-i,则$\frac{z_1}{z_2}$=( )
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -i | D. | i |
11.某产品的广告费用x与销售额y的统计数据如表:
根据上表可得回归方程y=bx+a的b为9.2,据此模型预报广告费用为6万元时销售额为( )
| 广告费用x(万元) | 4 | 2 | 3 | 5 |
| 销售额y(万元) | 49 | 26 | 39 | 54 |
| A. | 63.6万 | B. | 65万 | C. | 66.1万 | D. | 67.7万 |
8.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1,F2,M为C上位于第一象限的点,|MF1|=2,且MF1⊥y轴,MF2与椭圆C交于另一点N,若$\overrightarrow{M{F}_{2}}$=2$\overrightarrow{{F}_{2}N}$,则直线MN的斜率为( )
| A. | -$\frac{\sqrt{5}}{2}$ | B. | $\frac{2\sqrt{5}}{5}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{5}$ |