ÌâÄ¿ÄÚÈÝ
8£®¡¶¾ÅÕÂËãÊõ¡·ÊÇÎÒ¹úÊýѧʷÉÏ¿°ÓëÅ·¼¸ÀïµÃ¡¶¼¸ºÎÔ±¾¡·ÏàæÇÃÀµÄÊýѧÃûÖø£®ÆäÖУ¬½«µ×ÃæÎª³¤·½ÐÎÇÒÓÐÒ»Ìõ²àÀâÓëµ×Ãæ´¹Ö±µÄËÄÀâ×¶³ÆÖ®ÎªÑôÂí£»½«ËĸöÃæ¶¼ÎªÖ±½ÇÈý½ÇÐεÄËÄÃæÌå³ÆÖ®Îª±îëõ£®ÒÑÖªÖ±ÈýÀâÖùA1B1C1-ABCÖУ¬AB¡ÍBC£¬AB=3£¬$BC=4£¬A{A_1}=5\sqrt{3}$£¬½«Ö±ÈýÀâÖùÑØÒ»ÌõÀâºÍÁ½¸öÃæµÄ¶Ô½ÇÏß·Ö¸îΪһ¸öÑôÂíºÍÒ»¸ö±îëõ£¬Ôò±îëõµÄÌå»ýÓëÆäÍâ½ÓÇòµÄÌå»ýÖ®±ÈΪ£¨¡¡¡¡£©| A£® | $\sqrt{3}£º15¦Ð$ | B£® | $3\sqrt{3}£º5¦Ð$ | C£® | $3\sqrt{3}£º50¦Ð$ | D£® | $3\sqrt{3}£º25¦Ð$ |
·ÖÎö ·Ö±ðÇó³ö±îëõµÄÌå»ýÓëÆäÍâ½ÓÇòµÄÌå»ý£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£ºÓÉÌâÒ⣬±îëõµÄÌå»ý=$\frac{1}{3}¡Á\frac{1}{2}¡Á3¡Á4¡Á5\sqrt{3}$=10$\sqrt{3}$£¬
ÆäÍâ½ÓÇòµÄ°ë¾¶Îª$\frac{1}{2}\sqrt{25+75}$=5£¬Ìå»ýΪ$\frac{4}{3}¦Ð•{5}^{3}$=$\frac{500}{3}¦Ð$£¬
¡à±îëõµÄÌå»ýÓëÆäÍâ½ÓÇòµÄÌå»ýÖ®±ÈΪ10$\sqrt{3}$£º$\frac{500}{3}¦Ð$=3$\sqrt{3}$£º50¦Ð£¬
¹ÊÑ¡C£®
µãÆÀ ±¾Ì⿼²é±îëõµÄÌå»ýÓëÆäÍâ½ÓÇòµÄÌå»ý£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
16£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©=2|x-m|-1£¨m¡ÊR£©ÎªÅ¼º¯Êý£¬¼Ça=f£¨-2£©£¬b=f£¨log25£©£¬c=f£¨2m£©£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
| A£® | a£¼b£¼c | B£® | c£¼a£¼b | C£® | a£¼c£¼b | D£® | c£¼b£¼a |
13£®Ë«ÇúÏßmx2+ny2=1£¨mn£¼0£©µÄÒ»Ìõ½¥½üÏß·½³ÌΪ$y=\sqrt{3}x$£¬ÔòËüµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
| A£® | 2 | B£® | $\frac{{2\sqrt{3}}}{3}$ | C£® | $\sqrt{3}$»ò$\frac{{2\sqrt{3}}}{3}$ | D£® | 2»ò$\frac{{2\sqrt{3}}}{3}$ |
17£®ÒÑÖª¼¯ºÏA={x|x¡Ý3»òx¡Ü1}£¬B={x|x2-6x+8£¼0}£¬Ôò£¨∁RA£©¡ÉB=£¨¡¡¡¡£©
| A£® | £¨1£¬3£© | B£® | £¨1£¬4£© | C£® | £¨2£¬3£© | D£® | £¨2£¬4£© |