题目内容
17.过点M(1,1)的直线与椭圆$\frac{x^2}{12}+\frac{y^2}{9}=1$交于A,B两点,且点M平分弦AB,则直线AB方程为( )| A. | 4x+3y-7=0 | B. | 3x+4y-7=0 | C. | 3x-4y+1=0 | D. | 4x-3y-1=0 |
分析 设A(x1,y1),B(x2,y2),代入椭圆的方程,两式相减,通过x1+x2=2,y1+y2=2,即可解出直线的k,可得直线AB的方程.
解答 解:设A(x1,y1),B(x2,y2),代入椭圆的方程可得:$\frac{{{x}_{1}}^{2}}{12}+\frac{{{y}_{1}}^{2}}{9}=1$,$\frac{{{x}_{2}}^{2}}{12}+\frac{{{y}_{2}}^{2}}{9}=1$,
两式相减可得:$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{12}+\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{9}=0$,
又点M平分弦AB,∴x1+x2=2,y1+y2=2,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=k,
∴k=-$\frac{9({x}_{1}+{x}_{2})}{12({y}_{1}+{y}_{2})}$=$-\frac{3}{4}$.
∴直线AB的方程为:y-1=-$\frac{3}{4}$(x-1),化为3x+4y-7=0.
故选:B.
点评 本题考查了直线与椭圆相交问题转化为把直线方程与椭圆方程联立可得根与系数的关系、“点差法”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
8.已知向量$\vec n=(2,0,1)$为平面α的一个法向量,点A(-1,2,1)在α内,则P(1,2,-2)到平面α的距离为( )
| A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\sqrt{5}$ | C. | $2\sqrt{5}$ | D. | $\frac{{\sqrt{5}}}{10}$ |
12.己知x0=-$\frac{π}{6}$是函数f(x)=sin(2x+φ)的一个极小值点,则f(x)的一个单调递减区间是( )
| A. | ($\frac{π}{3}$,$\frac{5π}{6}$) | B. | ($\frac{π}{6}$,$\frac{2π}{3}$) | C. | ($\frac{π}{2}$,π) | D. | ($\frac{2π}{3}$,π) |
9.从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是( )
| A. | “至少有一个黑球”与“都是黑球” | |
| B. | “至少有一个黑球”与“至少有一个红球” | |
| C. | “恰好有一个黑球”与“恰好有两个黑球” | |
| D. | “至少有一个黑球”与“都是红球” |
6.在各项为正实数的等差数列{an}中,其前2016项的和S2016=1008,则$\frac{1}{{{a_{1001}}}}+\frac{1}{{{a_{1016}}}}$的最小值为( )
| A. | 6 | B. | 4 | C. | $\frac{1}{84}$ | D. | $\frac{1}{251}$ |