题目内容
4.甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,下列四个随机事件的概率是0.5的是( )①甲抛出正面次数比乙抛出正面次数多;
②甲抛出反面次数比乙抛出正面次数少;
③甲抛出反面次数比甲抛出正面次数多;
④乙抛出正面次数与乙抛出反面次数一样多.
| A. | ①② | B. | ①③ | C. | ②③ | D. | ②④ |
分析 甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,每次抛掷时出现正面的概率都是0.5,出现反面的概率也都是0.5,由此能求出结果.
解答 解:根据题意,甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,
每次抛掷时出现正面的概率都是0.5,出现反面的概率也都是0.5,
在①中,∵甲比乙多抛掷一次硬币,∴甲抛出正面次数比乙抛出正面次数多的概率为0.5,故①正确;
在②中,∵甲比乙多抛掷一次硬币,∴甲抛出反面次数比乙抛出正面次数少的概率不是0.5,故②错误;
在③中,∵甲抛掷均匀硬币2017次,∴甲抛出反面次数比甲抛出正面次数多的概率是0.5,故③正确;
在④中,∵乙抛掷均匀硬币2016次,
∴乙抛出正面次数与乙抛出反面次数一样多的概率为${C}_{2016}^{1008}(\frac{1}{2})^{1008}(\frac{1}{2})^{1008}$,故④错误.
故选:B.
点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意概率的意义的合理运用.
练习册系列答案
相关题目
15.某种产品的年销售量y与该年广告费用支出x有关,现收集了4组观测数据列于下表:
现确定以广告费用支出x为解释变量,销售量y为预报变量对这两个变量进行统计分析.
(1)已知这两个变量满足线性相关关系,试建立y与x之间的回归方程;
(2)假如2014年广告费用支出为10万元,请根据你得到的模型,预测该年的销售量y.
(3)根据公式R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,计算相关指数R2.
| x(万元) | 1 | 4 | 5 | 6 |
| y(万元) | 30 | 40 | 60 | 50 |
(1)已知这两个变量满足线性相关关系,试建立y与x之间的回归方程;
(2)假如2014年广告费用支出为10万元,请根据你得到的模型,预测该年的销售量y.
(3)根据公式R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,计算相关指数R2.
12.通过随机询问200名性别不同的大学生是否爱好踢毽子运动,计算得到统计量K2的观测值k≈4.892,参照附表,得到的正确结论是( )
| P(K2≥k) | 0.10 | 0.05 | 0.025 |
| k | 2.706 | 3.841 | 5.024 |
| A. | 有97.5%以上的把握认为“爱好该项运动与性别有关” | |
| B. | 有97.5%以上的把握认为“爱好该项运动与性别无关” | |
| C. | 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关” | |
| D. | 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关” |
19.某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示,其中第二批次女教职工人数占总人数的16%.
(1)求x的值;
(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?
| 第一批次 | 第二批次 | 第三批次 | |
| 女教职工 | 196 | x | y |
| 男教职工 | 204 | 156 | z |
(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?