题目内容
8、ABCD-A1B1C1D1为一正四棱柱,过A、C、B1三点作一截面,求证:截面ACB1⊥对角面DBB1D1.

分析:设AC、BD交于O点,作截面ACB1、对角面BB1D1D以及它们的交线OB1,要证明截面ACB1⊥对角面DBB1D1,只需证明截面ACB1内的直线AC垂直对角面DBB1D1内的相交直线BB1、BD即可.
解答:
证明:设AC、BD交于O点,
作截面ACB1、对角面BB1D1D以及它们的交线OB1如图,
由于AC1是正四棱柱,
所以ABCD是正方形,故AC⊥BD;又BB1⊥底面ABCD,
故BB1⊥AC,∴AC⊥对角面BB1D1D,
已知AC在截面ACB1内,
故有截面ACB1⊥对角面BB1D1D.
作截面ACB1、对角面BB1D1D以及它们的交线OB1如图,
由于AC1是正四棱柱,
所以ABCD是正方形,故AC⊥BD;又BB1⊥底面ABCD,
故BB1⊥AC,∴AC⊥对角面BB1D1D,
已知AC在截面ACB1内,
故有截面ACB1⊥对角面BB1D1D.
点评:本题考查平面与平面的垂直,考查逻辑思维能力,是中档题.
练习册系列答案
相关题目
在边长为a的正方体ABCD-A1B1C1D1中,E、F分别为AB与C1D1的中点.
(1)求证:四边形A1ECF是菱形;
(2)求证:EF⊥平面A1B1C;
(3)求A1B1与平面A1ECF所成角的正切值.
(1)求证:四边形A1ECF是菱形;
(2)求证:EF⊥平面A1B1C;
(3)求A1B1与平面A1ECF所成角的正切值.
已知正四棱柱ABCD―A1B1C1D1中,AB=2,AA1=3.
![]()
(I)求证:A1C⊥BD;
(II)求直线A1C与侧面BB1C1C所成的角的正切值;
|