题目内容
某人在打靶时射击8枪,命中四枪,若命中的4枪有且只有3枪是连续命中的,那么该人射击的8枪,按“命中”与“不命中”报告结果,有多少种不同的结果?
考点:计数原理的应用
专题:应用题,排列组合
分析:由题意,可用插空法求解,把不中的四枪看作是四个格板,格开了五个空隙,再将命中的四枪看作四个物体,由于其中有连中的三枪,此三枪绑定看作是一个物体,先插入此物体,再插入剩余的1个物体,由此计算出所有不同的情况即可选出正确答案.
解答:
解:本题可用插空法解决,把不中的四枪看作是四个格板,它们排成一列,分出五个空隙,再将命中的四枪看作是插入五个空隙中的四个物体,由于其中有三枪连中,将它们绑定看作一个物体,然后分两步插入五个空隙:
第一步插入绑定三个物体,有5种方法;
第二步将剩下1个物体插入剩下的四个空隙中,有4种方法,
故总的插入方法有5×4=20(种)
第一步插入绑定三个物体,有5种方法;
第二步将剩下1个物体插入剩下的四个空隙中,有4种方法,
故总的插入方法有5×4=20(种)
点评:本题考点是排列、组合及简单计数问题,考查插空法与绑定法,解答的关键是理解题意将问题正确转化,插空与绑定是计数中常采用的技巧,注意体会其使用的条件.
练习册系列答案
相关题目
运行如图所示程序框,若输入n=2015,则输出的a=( )

A、
| ||
B、
| ||
C、
| ||
D、
|
若a=20.5,b=log2
,c=logπ3,则有( )
| ||
| 2 |
| A、a>b>c |
| B、b>a>c |
| C、c>a>b |
| D、a>c>b |
“x、y中至少有一个小于零”是“x+y<0”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |