题目内容
已知x∈R,则“x2-3x>0”是“x-4>0”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:先解出不等式x2-3x>0,再判断命题的关系.
解答:
解:解x2-3x>0得,x<0,或x>3;
∵x<0,或x>3得不出x-4>0,∴“x2-3x>0”不是“x-4>0”充分条件;
但x-4>0能得出x>3,∴“x2-3x>0”是“x-4>0”必要条件.
故“x2-3x>0”是“x-4>0”的必要不充分条件.
故选:B.
∵x<0,或x>3得不出x-4>0,∴“x2-3x>0”不是“x-4>0”充分条件;
但x-4>0能得出x>3,∴“x2-3x>0”是“x-4>0”必要条件.
故“x2-3x>0”是“x-4>0”的必要不充分条件.
故选:B.
点评:能正确理解x<0,或x>3与x>4的关系,并理解充分条件与必要条件的概念.
练习册系列答案
相关题目
已知f(x)=
-1g
,则f(1g2)等于( )
|
| 5 |
| A、1 | ||
B、-
| ||
C、
| ||
D、
|
已知两个定点分别为F1(-5,0),F2(5,0),动点P到F1,F2距离差的绝对值等于6,则动点P的轨迹对应的方程为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知a=(
)
,b=(
)
,c=(
)
,则a,b,c的大小关系是( )
| 3 |
| 5 |
| 1 |
| 3 |
| 2 |
| 5 |
| 1 |
| 2 |
| 2 |
| 5 |
| 1 |
| 3 |
| A、c<b<a |
| B、b<c<a |
| C、b<a<c |
| D、a<c<b |
命题:“若空间两条直线a,b分别垂直于平面α,则a∥b.”学生小夏这样证明:设a,b与面α分别相交于A,B,连接A,B.
∵a⊥α,b⊥α,AB?α,①
∴a⊥AB,b⊥AB,②
∴a∥b.③
这里的证明有两个推理,p:①⇒②,q:②⇒③,则下列命题为真命题的是( )
∵a⊥α,b⊥α,AB?α,①
∴a⊥AB,b⊥AB,②
∴a∥b.③
这里的证明有两个推理,p:①⇒②,q:②⇒③,则下列命题为真命题的是( )
| A、p∧q | B、p∨q |
| C、¬p∨q | D、(¬p)∧(¬q) |
一个容量为20的数据样本,分组与频数为:[10,20]2个,(20,30]3个,(30,40]4个,(40,50]5个,(50,60]4个,(60,70]2个,则样本数据在区间(-∞,50)上的可能性为( )
| A、5% | B、25% |
| C、50% | D、70% |
在△ABC中,若
•
=
•
,则△ABC是( )
| AB |
| BC |
| AC |
| CB |
| A、等腰三角形 |
| B、直角三角形 |
| C、等腰直角三角形 |
| D、以上都不对 |
M={x∈R|x≥2},a=π,则下列四个式子①a∈M;②{a}?M; ③a⊆M;④{a}∩M=π,其中正确的是( )
| A、①② | B、①④ | C、②③ | D、①②④ |