题目内容
推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( )
A.① B.②
C.③ D.①和②
B
设等差数列{an}的前n项和为Sn,若2a6=6+a7,则S9的值是( )
A.27 B.36
C.45 D.54
已知数列{an}满足a1=1,an+1=则其前6项之和是( )
A.16 B.20
C.33 D.120
若P=(a≥0),则P,Q的大小关系( )
A.P>Q B.P=Q
C.P<Q D.由a取值决定
设Sn表示数列{an}的前n项和.
(1)若{an}为等差数列,推导Sn的计算公式;
(2)若a1=1,q≠0,且对所有正整数n,有Sn=,判断{an}是否为等比数列,并证明你的结论.
对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,如此反复操作,则第2 011次操作后得到的数是( )
A.25 B.250
C.55 D.133
观察下列算式:
13=1,
23=3+5,
33=7+9+11,
43=13+15+17+19,
……
若某数m3按上述规律展开后,发现等式右边含有“2 013”这个数,则m=________.
设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.
(1)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N*,求gn(x)的表达式;
(2)若f(x)≥ag(x)恒成立,求实数a的取值范围.
若x,y满足约束条件
(1)求目标函数z=x-y+的最值.
(2)若目标函数z=ax+2y仅在点(1,0)处取得最小值,求a的取值范围.