题目内容
过抛物线y2=4x的焦点F且倾斜角为60°的直线l与抛物线在第一、四象限分别交于A、B两点,则
等于( )
| |AF| |
| |BF| |
| A、5 | B、4 | C、3 | D、2 |
考点:直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程
分析:设出A、B坐标,利用抛物线焦半径公式求出|AB|,结合抛物线的性质x1x2=
,求出A、B的坐标,然后求比值
即可.
| p2 |
| 4 |
| |AF| |
| |BF| |
解答:
解:设A(x1,y1),B(x2,y2),则
|AB|=x1+x2+p=
=
,
∴x1+x2=
,
又x1x2=
,可得x1=
,x2=
,
∴
=
=3.
故选C.
|AB|=x1+x2+p=
| 2p |
| sin260° |
| 8p |
| 3 |
∴x1+x2=
| 5p |
| 3 |
又x1x2=
| p2 |
| 4 |
| 3p |
| 2 |
| p |
| 6 |
∴
| |AF| |
| |BF| |
| ||||
|
故选C.
点评:本题考查直线与抛物线的位置关系,抛物线的简单性质,特别是焦点弦问题,解题时要善于运用抛物线的定义解决问题.
练习册系列答案
相关题目
已知命题p:函数y=loga(ax+2a)(a>0且a≠1)的图象必过定点(-1,1);命题q:函数y=f(x+1)的图象关于原点对称,则y=f(x)的图象关于点(-1,0)对称,则( )
| A、“p且q”为真 |
| B、“p或q”为假 |
| C、p假q真 |
| D、p真q假 |
若p∧q真命题,则:
①p或q是真命题,
②p且¬q是真命题,
③¬p且¬q是假命题,
④¬p或¬q是假命题,其中正确的是( )
①p或q是真命题,
②p且¬q是真命题,
③¬p且¬q是假命题,
④¬p或¬q是假命题,其中正确的是( )
| A、①② | B、③④ | C、②④ | D、①③④ |
已知集合A1,A2满足A={x|x∈A1或x∈A2}为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={1,2}的不同分拆的种数为( )
| A、8 | B、9 | C、4 | D、5 |
已知三棱锥A-BCD中,平面ABD⊥平面BCD,BC⊥CD,BC=CD=4,AB=AD=2
,则三棱锥A-BCD的外接球的大圆面积为( )
| 3 |
| A、36π | B、27π |
| C、12π | D、9π |
过点A(2,1)的直线与双曲线2x2-y2=2交于P、Q两点,则线段PQ的中点M的轨迹方程是( )
| A、2x2-y2-4x+y=0 |
| B、2x2-y2+4x+y=0 |
| C、2x2-y2+4x-y=0 |
| D、2x2-y2-4x-y=0 |
“?x∈R,x2+x+1>0“的否定是( )
| A、?x0∈R,x02+x0+1>0 |
| B、?x0∈R,x02+x0+1≤0 |
| C、?x∈R,x2+x+1>0 |
| D、?x∈R,x2+x+1≤0 |
设全集A={x|x2-2x-15<0},B={x|y=lg(x+2)},则A∩B表示的集合是( )
| A、[2,3] |
| B、(-2,5) |
| C、[0,2] |
| D、(2,+∞) |