题目内容
已知数列{an}中,a1=2,an=an+1+
anan+1(n∈N*).
(1)求证:数列{
}为等差数列;
(2)若
是
和1的等差中项,求通项bn;
(3)在(2)的条件下,设数列{bnbn+1}的前n项和为Tn,求证:Tn<
.
| 3 |
| 2 |
(1)求证:数列{
| 1 |
| an |
(2)若
| 1 |
| bn |
| 1 |
| an |
(3)在(2)的条件下,设数列{bnbn+1}的前n项和为Tn,求证:Tn<
| 16 |
| 9 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由已知得
-
=
-
=
,由此能证明数列{
}为等差数列.
(2)由
=
+
(n-1)=
,
是
和1的等差中项,能求出bn=
.
(3)由bnbn+1=
•
=
(
-
),利用裂项求和法能证明Tn<
.
| 1 |
| an+1 |
| 1 |
| an |
| 3an+2 |
| 2an |
| 1 |
| an |
| 3 |
| 2 |
| 1 |
| an |
(2)由
| 1 |
| an |
| 1 |
| 2 |
| 3 |
| 2 |
| 3n-2 |
| 2 |
| 1 |
| bn |
| 1 |
| an |
| 4 |
| 3n |
(3)由bnbn+1=
| 4 |
| 3n |
| 4 |
| 3(n+1) |
| 16 |
| 9 |
| 1 |
| n |
| 1 |
| n+1 |
| 16 |
| 9 |
解答:
(1)证明:由已知得,an+1=
…(1分)
∴
-
=
-
=
,…(3分)
∴数列{
}是等差数列,公差d=
,首项为
=
.…(4分)
(2)解:由(1)知,
=
+
(n-1)=
,…(6分)
又∵
是
和1的等差中项,
∴
=
+1=
+1=
,…(8分)
∴bn=
.…(9分)
(3)证明:由(2)知,bnbn+1=
•
=
(
-
),…(11分)
∴Tn=
(1-
+
-
+…+
-
)
=
(1-
)…(13分)
∵n∈N*,∴0<1-
<1,
从而Tn<
.…(14分)
| 2an |
| 3an+2 |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 3an+2 |
| 2an |
| 1 |
| an |
| 3 |
| 2 |
∴数列{
| 1 |
| an |
| 3 |
| 2 |
| 1 |
| a1 |
| 1 |
| 2 |
(2)解:由(1)知,
| 1 |
| an |
| 1 |
| 2 |
| 3 |
| 2 |
| 3n-2 |
| 2 |
又∵
| 1 |
| bn |
| 1 |
| an |
∴
| 2 |
| bn |
| 1 |
| an |
| 3n-2 |
| 2 |
| 3n |
| 2 |
∴bn=
| 4 |
| 3n |
(3)证明:由(2)知,bnbn+1=
| 4 |
| 3n |
| 4 |
| 3(n+1) |
| 16 |
| 9 |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=
| 16 |
| 9 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 16 |
| 9 |
| 1 |
| n+1 |
∵n∈N*,∴0<1-
| 1 |
| n+1 |
从而Tn<
| 16 |
| 9 |
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
设点M(m,0)在椭圆
+
=1的长轴上,点p是椭圆上任意一点. 当
的模最小时,点p恰好落在椭圆的右顶点,则实数m的取值范围( )
| x2 |
| 16 |
| y2 |
| 12 |
| MP |
| A、[0,4] |
| B、[1,4] |
| C、[1,5] |
| D、[3,4] |