题目内容

17.已知α是第四象限角,且f(α)=$\frac{sin(-α-π)cos(5π-α)tan(4π-α)}{cos(\frac{5π}{2}-α)tan(-α-π)}$
(1)化简f(α);
(2)若tan(α-π)=-3,求f(α)的值.

分析 (1)利用诱导公式化简求解函数的解析式即可.
(2)求出正切函数值,然后利用同角三角函数基本关系式求解即可.

解答 解:(1)f(α)=$\frac{sin(-α-π)cos(5π-α)tan(4π-α)}{cos(\frac{5π}{2}-α)tan(-α-π)}$=$\frac{sinαcosαtanα}{-sinαtanα}$=-cosα.
(2)tan(α-π)=-3,可得tanα=-3.$\left\{\begin{array}{l}{\frac{sinα}{cosα}=-3}\\{si{n}^{2}α+co{s}^{2}α=1}\end{array}\right.$,
可得cos2$α=\frac{1}{10}$,
α是第四象限角,
∴cosα=$\frac{\sqrt{10}}{10}$.
f(α)=-$\frac{\sqrt{10}}{10}$.

点评 本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网