题目内容
设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,且满足Tn=
Sn-3n,n∈N*.
(1)求a1的值.
(2)求数列{an}的通项公式;
(3)记bn=
,n∈N*,求证b1+b2+…+bn<1.
| 3 |
| 2 |
(1)求a1的值.
(2)求数列{an}的通项公式;
(3)记bn=
| 2an |
| (an-2)2 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)当n=1时,a1=
a1-3,由此能求出a1=6.
(2)当n≥2时,Sn=Tn-Tn-1=
an+3,an=Sn-Sn-1=
an-
an-1,从而得到{an}是首项为6,公比为3的等比数列,由此能求出an=6×3n-1=2•3n.
(3)bn=
=
=
,当n=1时,b1=
<1,当n≥2时,bn=
=
=
<
=
(
-
),由此利用裂项求和法能证明b1+b2+…+bn<1.
| 3 |
| 2 |
(2)当n≥2时,Sn=Tn-Tn-1=
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
(3)bn=
| 2an |
| (an-2)2 |
| 4•3n |
| 4(3n-1)2 |
| 3n |
| (3n-1)2 |
| 3 |
| 4 |
| 2an |
| (an-2)2 |
| 4•3n |
| 4(3n-1)2 |
| 3n |
| (3n-1)2 |
| 3n |
| (3n-1)(3n-3) |
| 1 |
| 2 |
| 1 |
| 3n-1-1 |
| 1 |
| 3n-1 |
解答:
(1)解:∵数列{an}的前n项和为Sn,
数列{Sn}的前n项和为Tn,
且满足Tn=
Sn-3n,n∈N*.
∴当n=1时,a1=
a1-3,解得a1=6.
(2)解:当n≥2时,Sn=Tn-Tn-1=
an+3,
∴n≥2时,an=Sn-Sn-1=
an-
an-1,即an=3an-1,
∴{an}是首项为6,公比为3的等比数列,
∴an=6×3n-1=2•3n.
(3)证明:bn=
=
=
,
当n=1时,b1=
<1,
当n≥2时,bn=
=
=
<
=
=
(
-
),
∴b1+b2+…+bn<
+
(
-
+
-
+…+
-
)
=
+
(
-
)
=1-
<1,
∴b1+b2+…+bn<1.
数列{Sn}的前n项和为Tn,
且满足Tn=
| 3 |
| 2 |
∴当n=1时,a1=
| 3 |
| 2 |
(2)解:当n≥2时,Sn=Tn-Tn-1=
| 3 |
| 2 |
∴n≥2时,an=Sn-Sn-1=
| 3 |
| 2 |
| 3 |
| 2 |
∴{an}是首项为6,公比为3的等比数列,
∴an=6×3n-1=2•3n.
(3)证明:bn=
| 2an |
| (an-2)2 |
| 4•3n |
| 4(3n-1)2 |
| 3n |
| (3n-1)2 |
当n=1时,b1=
| 3 |
| 4 |
当n≥2时,bn=
| 2an |
| (an-2)2 |
| 4•3n |
| 4(3n-1)2 |
| 3n |
| (3n-1)2 |
<
| 3n |
| (3n-1)(3n-3) |
| 3n-1 |
| (3n-1)(3n-1-1) |
| 1 |
| 2 |
| 1 |
| 3n-1-1 |
| 1 |
| 3n-1 |
∴b1+b2+…+bn<
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3-1 |
| 1 |
| 9-1 |
| 1 |
| 9-1 |
| 1 |
| 27-1 |
| 1 |
| 3n-1-1 |
| 1 |
| 3n-1 |
=
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3n-1 |
=1-
| 3 |
| 4(3n-1) |
∴b1+b2+…+bn<1.
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要注意放缩法和裂项求和法的合理运用.
练习册系列答案
相关题目
已知△ABC的外接圆半径为1,圆心为O,且3
+4
+5
=
,则
•
的值为( )
| OA |
| OB |
| OC |
| 0 |
| OC |
| AB |
A、-
| ||
B、
| ||
C、-
| ||
D、
|
若数列{an}的前n项和为Sn对任意正整数n都有Sn=2an-1,则S6=( )
| A、32 | B、31 | C、64 | D、63 |
集合A={y|y=(
)x,x>-1},B={x|y=
},则A∩B=( )
| 1 |
| 2 |
| 2-x2 |
| A、{x|0<x<2} | ||
B、{x|0<x<
| ||
C、{x|0<x≤
| ||
D、{x|0≤x≤
|