题目内容

设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,且满足Tn=
3
2
Sn-3n,n∈N*
(1)求a1的值.
(2)求数列{an}的通项公式;
(3)记bn=
2an
(an-2)2
,n∈N*,求证b1+b2+…+bn<1.
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)当n=1时,a1=
3
2
a1
-3,由此能求出a1=6.
(2)当n≥2时,Sn=Tn-Tn-1=
3
2
an
+3,an=Sn-Sn-1=
3
2
an-
3
2
an-1
,从而得到{an}是首项为6,公比为3的等比数列,由此能求出an=6×3n-1=2•3n
(3)bn=
2an
(an-2)2
=
4•3n
4(3n-1)2
=
3n
(3n-1)2
,当n=1时,b1=
3
4
<1,当n≥2时,bn=
2an
(an-2)2
=
4•3n
4(3n-1)2
=
3n
(3n-1)2
3n
(3n-1)(3n-3)
=
1
2
(
1
3n-1-1
-
1
3n-1
)
,由此利用裂项求和法能证明b1+b2+…+bn<1.
解答: (1)解:∵数列{an}的前n项和为Sn
数列{Sn}的前n项和为Tn
且满足Tn=
3
2
Sn-3n,n∈N*
∴当n=1时,a1=
3
2
a1
-3,解得a1=6.
(2)解:当n≥2时,Sn=Tn-Tn-1=
3
2
an
+3,
∴n≥2时,an=Sn-Sn-1=
3
2
an-
3
2
an-1
,即an=3an-1
∴{an}是首项为6,公比为3的等比数列,
an=6×3n-1=2•3n
(3)证明:bn=
2an
(an-2)2
=
4•3n
4(3n-1)2
=
3n
(3n-1)2

当n=1时,b1=
3
4
<1,
当n≥2时,bn=
2an
(an-2)2
=
4•3n
4(3n-1)2
=
3n
(3n-1)2

3n
(3n-1)(3n-3)
=
3n-1
(3n-1)(3n-1-1)
=
1
2
(
1
3n-1-1
-
1
3n-1
)

∴b1+b2+…+bn
3
4
+
1
2
(
1
3-1
-
1
9-1
+
1
9-1
-
1
27-1
+…+
1
3n-1-1
-
1
3n-1
)

=
3
4
+
1
2
(
1
2
-
1
3n-1
)

=1-
3
4(3n-1)
<1,
∴b1+b2+…+bn<1.
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要注意放缩法和裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网