题目内容

19.在△ABC中,角A、B、C所对的边分别为a、b、c.已知acosAcosB-bsin2A-ccosA=2bcosB.
(1)求B;
(2)若$b=\sqrt{7}a,{S_{△ABC}}=2\sqrt{3}$,求a.

分析 (1)由正弦定理,三角形内角和定理,三角函数恒等变换的应用化简已知等式可得2sinBcosB=-sinB,结合sinB≠0,可求cosB=-$\frac{1}{2}$,进而可求B的值.
(2)由已知及余弦定理可求c2+ac-6a2=0,解得c=2a,进而利用三角形面积公式可求a的值.

解答 (本题满分为12分)
解:(1)由正弦定理得:
2sinBcosB=sinAcosAcosB-sinBsin2A-sinCcosA
=sinAcos(A+B)-sinCcosA
=-sinAcosC-sinCcosA
=-sin(A+C)
=-sinB,
∵sinB≠0,
∴cosB=-$\frac{1}{2}$,B=$\frac{2π}{3}$.…(6分)
(2)由b2=a2+c2-2accosB,b=$\sqrt{7}$a,cosB=-$\frac{1}{2}$,得:c2+ac-6a2=0,解得c=2a,…(10分)
由S△ABC=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{2}$a2=2$\sqrt{3}$,得a=2.…(12分)

点评 本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,余弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网