ÌâÄ¿ÄÚÈÝ
| x2 |
| a2 |
| y2 |
| b2 |
µãPÊÇÍÖÔ²ÉÏÒìÓÚµãA¡¢BµÄÈÎÒâÒ»µã£¬Á¬½ÓAP²¢ÑÓ³¤½»Ö±ÏßlÓÚµãN£¬Á¬½ÓPB²¢ÑÓ³¤½»Ö±ÏßlÓÚµãM£¬ÉèAPËùÔÚµÄÖ±ÏßµÄбÂÊΪk1£¬BPËùÔÚµÄÖ±ÏßµÄбÂÊΪk2£¬ÈôÍÖÔ²µÄÀëÐÄÂÊΪ
| ||
| 2 |
£¨1£©Çók1•k2µÄÖµ¼°Ïß¶ÎMNµÄ×îСֵ£»
£¨2£©Ëæ×ŵãPµÄ±ä»¯£¬ÒÔMNΪֱ¾¶µÄÔ²ÊÇ·ñºã¹ý¶¨µã£¿Èô¹ý¶¨µã£¬Çó³ö¸Ã¶¨µã£»Èç²»¹ý¶¨µã£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺¼ÆËãÌâ,Ö±ÏßÓëÔ²,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©ÓÉÌâÒâ¿ÉÖªe=
=
£¬b=1£¬ÓÖa2-b2=c2£¬½â³öa£¬bµÃµ½ÍÖÔ²·½³Ì£¬ÉèÍÖÔ²ÉϵãP£¨x0£¬y0£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔÙÓÉбÂʹ«Ê½£¬¼´¿ÉµÃµ½k1•k2µÄÖµ£¬ÉèM£¨x1£¬-2£©£¬N£¨x2£¬-2£©£¬Çó³öx1x2=-12£¬ÔÙÓÉ»ù±¾²»µÈʽÇó³öMN=|x1-x2|µÄ×îСֵ£»
£¨2£©ÉèM£¨x1£¬-2£©£¬N£¨x2£¬-2£©£¬ÔòÒÔMNΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£¨x-x1£©£¨x-x2£©+£¨y+2£©2=0£¬»¯¼òÕûÀí£¬ÈôÔ²¹ý¶¨µã£¬ÔòÓÐx=0£¬x2+£¨y+2£©2-12=0£¬½â³ö¼´¿ÉÅжϣ®
| c |
| a |
| ||
| 2 |
£¨2£©ÉèM£¨x1£¬-2£©£¬N£¨x2£¬-2£©£¬ÔòÒÔMNΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£¨x-x1£©£¨x-x2£©+£¨y+2£©2=0£¬»¯¼òÕûÀí£¬ÈôÔ²¹ý¶¨µã£¬ÔòÓÐx=0£¬x2+£¨y+2£©2-12=0£¬½â³ö¼´¿ÉÅжϣ®
½â´ð£º
½â£º£¨1£©ÒòΪe=
=
£¬b=1£¬ÓÖa2-b2=c2£¬½âµÃa=2£¬
ËùÒÔÍÖÔ²CµÄ±ê×¼·½³ÌΪ
+y2=1£®
ÉèÍÖÔ²ÉϵãP£¨x0£¬y0£©£¬ÓÐ
+y02=1£¬
ËùÒÔk1•k2=
•
=
=-
£®
ÒòΪM£¬NÔÚÖ±Ïßl£ºy=-2ÉÏ£¬ÉèM£¨x1£¬-2£©£¬N£¨x2£¬-2£©£¬
ÓÉ·½³ÌÖª
+y2=1Öª£¬A£¨0£¬1£©£¬B£¨0£¬-1£©£¬
ËùÒÔKBM•kAN=
•
=
£¬
ÓÖÓÉÉÏÃæÖªkAN•kBM=k1•k2=-
£¬ËùÒÔx1x2=-12£¬
²»·ÁÉèx1£¼0£¬Ôòx2£¾0£¬Ôò
MN=|x1-x2|=x2-x1=x2+
¡Ý2
=4
£¬
ËùÒÔµ±ÇÒ½öµ±x2=-x1=2
ʱ£¬MNÈ¡µÃ×îСֵ4
£®
£¨2£©ÉèM£¨x1£¬-2£©£¬N£¨x2£¬-2£©£¬
ÔòÒÔMNΪֱ¾¶µÄÔ²µÄ·½³ÌΪ
£¨x-x1£©£¨x-x2£©+£¨y+2£©2=0£¬
¼´x2+£¨y+2£©2-12-£¨x1+x2£©x=0£¬ÈôÔ²¹ý¶¨µã£¬
ÔòÓÐx=0£¬x2+£¨y+2£©2-12=0£¬½âµÃx=0£¬y=-2¡À2
£¬
ËùÒÔ£¬ÎÞÂÛµãPÈçºÎ±ä»¯£¬ÒÔMNΪֱ¾¶µÄÔ²ºã¹ý¶¨µã£¨0£¬-2¡À2
£©£®
| c |
| a |
| ||
| 2 |
ËùÒÔÍÖÔ²CµÄ±ê×¼·½³ÌΪ
| x2 |
| 4 |
ÉèÍÖÔ²ÉϵãP£¨x0£¬y0£©£¬ÓÐ
| x02 |
| 4 |
ËùÒÔk1•k2=
| y0-1 |
| x0 |
| y0+1 |
| x0 |
| y02-1 |
| x02 |
| 1 |
| 4 |
ÒòΪM£¬NÔÚÖ±Ïßl£ºy=-2ÉÏ£¬ÉèM£¨x1£¬-2£©£¬N£¨x2£¬-2£©£¬
ÓÉ·½³ÌÖª
| x2 |
| 4 |
ËùÒÔKBM•kAN=
| -2-(-1) |
| x1-0 |
| -2-1 |
| x2-0 |
| 3 |
| x1x2 |
ÓÖÓÉÉÏÃæÖªkAN•kBM=k1•k2=-
| 1 |
| 4 |
²»·ÁÉèx1£¼0£¬Ôòx2£¾0£¬Ôò
MN=|x1-x2|=x2-x1=x2+
| 12 |
| x2 |
x2•
|
| 3 |
ËùÒÔµ±ÇÒ½öµ±x2=-x1=2
| 3 |
| 3 |
£¨2£©ÉèM£¨x1£¬-2£©£¬N£¨x2£¬-2£©£¬
ÔòÒÔMNΪֱ¾¶µÄÔ²µÄ·½³ÌΪ
£¨x-x1£©£¨x-x2£©+£¨y+2£©2=0£¬
¼´x2+£¨y+2£©2-12-£¨x1+x2£©x=0£¬ÈôÔ²¹ý¶¨µã£¬
ÔòÓÐx=0£¬x2+£¨y+2£©2-12=0£¬½âµÃx=0£¬y=-2¡À2
| 3 |
ËùÒÔ£¬ÎÞÂÛµãPÈçºÎ±ä»¯£¬ÒÔMNΪֱ¾¶µÄÔ²ºã¹ý¶¨µã£¨0£¬-2¡À2
| 3 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ô²µÄ·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßµÄбÂʹ«Ê½µÄÔËÓã¬ÒÔ¼°ºã¹ý¶¨µãÎÊÌ⣬ÔËËãºÍ»¯¼òÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Éè¡÷ABCµÄÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ßa£¬b£¬c³ÉµÈ±ÈÊýÁУ¬Ôò
µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| sinA+cosA•tanC |
| sinB+cosB•tanC |
| A¡¢£¨0£¬+¡Þ£© | ||||||||
B¡¢£¨0£¬
| ||||||||
C¡¢£¨
| ||||||||
D¡¢£¨
|