题目内容
12.已知奇函数f (-2)=5,则f ( 2 )=-5.分析 根据函数奇偶性的定义和性质即可得到结论.
解答 解:∵函数f(x)为奇函数,且f (-2)=5,
∴f(2)=-f(-2)=-5,
故答案为:-5.
点评 本题主要考查函数奇偶性的应用,比较基础.
练习册系列答案
相关题目
3.已知集合A={x|x<a},B={x|1<x<2},B⊆A,则实数a的取值范围是( )
| A. | a≤1 | B. | a<1 | C. | a≥2 | D. | a>2 |
7.“x>2”是“x2-4>0”的( )
| A. | 必要而不充分条件 | B. | 充分而不必要条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
17.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将列联表补充完整(不用写计算过程);
并求出:有多大把握认为喜爱打篮球与性别有关,说明你的理由;
(2)若从该班不喜爱打篮球的男生中随机抽取3人调查,求其中某男生甲被选到的概率.
下面的临界值表供参考:
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(1)请将列联表补充完整(不用写计算过程);
| 喜爱 | 不喜爱 | 合计 | |
| 男生 | 5 | ||
| 女生 | 10 | ||
| 合计 | 50 |
(2)若从该班不喜爱打篮球的男生中随机抽取3人调查,求其中某男生甲被选到的概率.
下面的临界值表供参考:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
1.函数f(x)=$\frac{\sqrt{x}-1}{lgx-\frac{1}{2}}$的定义域是( )
| A. | (0,$\sqrt{10})∪(\sqrt{10},+∞)$∪($\sqrt{10}$,+∞) | B. | ($\frac{3}{2},+∞$) | ||
| C. | $[1,\frac{3}{2})∪(\frac{3}{2},+∞)$ | D. | $(1,\sqrt{10})∪(\sqrt{10},+∞)$ |