题目内容
考点:平面与平面平行的判定
专题:空间位置关系与距离
分析:由三角形中位线性质得EF∥AB,从而EF∥平面ABC,同理:FG∥平面ABC,由此能证明平面EFG∥平面ABC.
解答:
证明:∵AS=AB,AF⊥SB,∴F是SB的中点,
∵E、F分别是SA、SB的中点,
∴EF∥AB,
又∵EF?平面ABC,AB⊆平面ABC,
∴EF∥平面ABC,
同理:FG∥平面ABC,
又∵EF∩FG=F,EF、FG⊆平面ABC,
∴平面EFG∥平面ABC.
∵E、F分别是SA、SB的中点,
∴EF∥AB,
又∵EF?平面ABC,AB⊆平面ABC,
∴EF∥平面ABC,
同理:FG∥平面ABC,
又∵EF∩FG=F,EF、FG⊆平面ABC,
∴平面EFG∥平面ABC.
点评:本题考查平面与平面垂直的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
设函数f(x)=lgx-
x2+1(x>0),则f(x)( )
| 1 |
| 2 |
| A、在区间(0,1)和(1,2)内均没有零点 |
| B、在区间(0,1)内没有零点,而在区间(1,2)内有零点 |
| C、在区间(1,2)内没有零点,而在区间(0,1)内有零点 |
| D、在区间(0,1)和(1,2)内均有零点 |