题目内容

如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点求证:平面EFG∥平面ABC.
考点:平面与平面平行的判定
专题:空间位置关系与距离
分析:由三角形中位线性质得EF∥AB,从而EF∥平面ABC,同理:FG∥平面ABC,由此能证明平面EFG∥平面ABC.
解答: 证明:∵AS=AB,AF⊥SB,∴F是SB的中点,
∵E、F分别是SA、SB的中点,
∴EF∥AB,
又∵EF?平面ABC,AB⊆平面ABC,
∴EF∥平面ABC,
同理:FG∥平面ABC,
又∵EF∩FG=F,EF、FG⊆平面ABC,
∴平面EFG∥平面ABC.
点评:本题考查平面与平面垂直的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网