题目内容
15.为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:| 抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 零件尺寸 | 9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
| 抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 零件尺寸 | 10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
(1)求(xi,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在($\overline{x}$-3s,$\overline{x}$+3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在($\overline{x}$-3s,$\overline{x}$+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(xi,yi)(i=1,2,…,n)的相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}\sqrt{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,$\sqrt{0.008}$≈0.09.
分析 (1)代入数据计算,比较|r|与0.25的大小作出结论;
(2)(i)计算合格零件尺寸范围,得出结论;
(ii)代入公式计算即可.
解答 解:(1)r=$\frac{\sum_{i=1}^{16}({x}_{i}-\overline{x})(i-8.5)}{\sqrt{\sum_{i=1}^{16}({x}_{i}-\overline{x})^{2}}\sqrt{\sum_{i=1}^{16}(i-8.5)^{2}}}$=$\frac{-2.78}{0.212×\sqrt{16}×18.439}$=-0.18.
∵|r|<0.25,∴可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.
(2)(i)$\overline{x}$=9.97,s=0.212,∴合格零件尺寸范围是(9.334,10,606),
显然第13号零件尺寸不在此范围之内,
∴需要对当天的生产过程进行检查.
(ii)剔除离群值后,剩下的数据平均值为$\frac{1}{15}(16×9.97-9.22)$=10.02,
$\sum_{i=1}^{16}{{x}_{i}}^{2}$=16×0.2122+16×9.972=1591.134,
∴剔除离群值后样本方差为$\frac{1}{15}$(1591.134-9.222-15×10.022)=0.008,
∴剔除离群值后样本标准差为$\sqrt{0.008}$≈0.09.
点评 本题考查了相关系数的计算,样本均值与标准差的计算,属于中档题.
练习册系列答案
相关题目
10.已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=( )
| A. | (-1,2) | B. | (0,1) | C. | (-1,0) | D. | (1,2) |
7.已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的最小值是( )
| A. | -2 | B. | -$\frac{3}{2}$ | C. | -$\frac{4}{3}$ | D. | -1 |