题目内容
(1)计算log3
+lg25+lg4+7log72+(-9.8)0+0.25-2.
(2)已知a+a-1=3,求a2-a-2的值.
| 27 |
(2)已知a+a-1=3,求a2-a-2的值.
考点:对数的运算性质,根式与分数指数幂的互化及其化简运算
专题:函数的性质及应用
分析:(1)直接利用对数的运算性质求解即可.
(2)已知a+a-1=3,求a2-a-2的值,利用a2-a-2=(a-a-1)(a-a-1),代入计算即可.
(2)已知a+a-1=3,求a2-a-2的值,利用a2-a-2=(a-a-1)(a-a-1),代入计算即可.
解答:
解:(1)log3
+lg25+lg4+7log72+(-9.8)0+0.25-2.
=
+2lg5+2lg2+2+1+16
=
+2+2+1+16
=
.
(2)已知a+a-1=3,∴a2-a-2=(a+a-1)(a-a-1).
(a-a-1)2=(a+a-1)2-4=9-4=5,
∴a2-a-2=(a+a-1)(a-a-1)=±3
.
| 27 |
=
| 3 |
| 2 |
=
| 3 |
| 2 |
=
| 45 |
| 2 |
(2)已知a+a-1=3,∴a2-a-2=(a+a-1)(a-a-1).
(a-a-1)2=(a+a-1)2-4=9-4=5,
∴a2-a-2=(a+a-1)(a-a-1)=±3
| 5 |
点评:本题主要考查了指数幂花间和计算,灵活利用完全平方公式,属于基础题.
练习册系列答案
相关题目
函数y=x
的图象是( )
| 1 |
| 3 |
| A、 |
| B、 |
| C、 |
| D、 |