ÌâÄ¿ÄÚÈÝ
16£®ÒÑÖª$\overrightarrow{a}$£¬$\overrightarrow{b}$ÊÇÁ½¸öµ¥Î»ÏòÁ¿£®£¨¢ñ£©Èô|$\overrightarrow{a}$-2$\overrightarrow{b}$|=2£¬ÊÔÇó|$\overrightarrow{a}$-$\overrightarrow{b}$|µÄÖµ£»
£¨¢ò£©Èô$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇΪ60¡ã£¬ÊÔÇóÏòÁ¿$\overrightarrow{m}$=$\overrightarrow{a}$+$\overrightarrow{b}$Óë$\overrightarrow{n}$=$\overrightarrow{a}$-3$\overrightarrow{b}$µÄ¼Ð½ÇµÄÓàÏÒÖµ£®
·ÖÎö £¨¢ñ£©¸ù¾ÝÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÓëÄ£³¤¹«Ê½£¬ÏÈÇó³ö$\overrightarrow{a}$•$\overrightarrow{b}$µÄÖµ£¬ÔÙÇó³ö|$\overrightarrow{a}$-$\overrightarrow{b}$|£»
£¨¢ò£©¸ù¾ÝÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÓë¼Ð½Ç¹«Ê½£¬¼´¿ÉÇó³ö$\overrightarrow{m}$¡¢$\overrightarrow{n}$¼Ð½ÇµÄÓàÏÒÖµ£®
½â´ð ½â£º£¨¢ñ£©$\overrightarrow{a}$£¬$\overrightarrow{b}$ÊÇÁ½¸öµ¥Î»ÏòÁ¿£¬
µ±|$\overrightarrow{a}$-2$\overrightarrow{b}$|=2ʱ£¬${£¨\overrightarrow{a}-2\overrightarrow{b}£©}^{2}$=${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}$•$\overrightarrow{b}$+4${\overrightarrow{b}}^{2}$=1-4$\overrightarrow{a}$•$\overrightarrow{b}$+4=4£¬
¡à$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{4}$£¬
¡à${£¨\overrightarrow{a}-\overrightarrow{b}£©}^{2}$=${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=1-2¡Á$\frac{1}{4}$+1=$\frac{3}{2}$£¬
¡à|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{\frac{3}{2}}$=$\frac{\sqrt{6}}{2}$£»
£¨¢ò£©Èô$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇΪ60¡ã£¬Ôò$\overrightarrow{a}$•$\overrightarrow{b}$=1¡Á1¡Ácos60¡ã=$\frac{1}{2}$£¬
ÓÖÏòÁ¿$\overrightarrow{m}$=$\overrightarrow{a}$+$\overrightarrow{b}$£¬$\overrightarrow{n}$=$\overrightarrow{a}$-3$\overrightarrow{b}$£¬
¡à$\overrightarrow{m}$•$\overrightarrow{n}$=${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}$•$\overrightarrow{b}$-3${\overrightarrow{b}}^{2}$=1-2¡Á$\frac{1}{2}$-3¡Á1=-3£¬
|$\overrightarrow{m}$|=$\sqrt{{\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}{+\overrightarrow{b}}^{2}}$=$\sqrt{1+2¡Á\frac{1}{2}+1}$=$\sqrt{3}$£¬
|$\overrightarrow{n}$|=$\sqrt{{\overrightarrow{a}}^{2}-6\overrightarrow{a}•\overrightarrow{b}+{9\overrightarrow{b}}^{2}}$=$\sqrt{1-6¡Á\frac{1}{2}+9}$=$\sqrt{7}$£¬
¡à$\overrightarrow{m}$¡¢$\overrightarrow{n}$µÄ¼Ð½Ç¦ÈµÄÓàÏÒֵΪ
cos¦È=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|¡Á|\overrightarrow{n}|}$=$\frac{-3}{\sqrt{3}¡Á\sqrt{7}}$=-$\frac{\sqrt{21}}{7}$£®
µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÓëÄ£³¤¹«Ê½ÒÔ¼°¼Ð½Ç¹«Ê½µÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
| A£® | 11110 | B£® | 10101 | C£® | 10011 | D£® | 10001 |
| A£® | 1 | B£® | 2 | C£® | $\frac{{2\sqrt{3}}}{3}$ | D£® | $\sqrt{3}$ |
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
| A£® | 5 | B£® | {5} | C£® | ∅ | D£® | {1£¬2£¬3£¬4} |
| A£® | g£¨x£©=x2 | B£® | $g£¨x£©=\frac{1}{x}$ | C£® | g£¨x£©=x3 | D£® | $g£¨x£©={x^{\frac{1}{2}}}$ |
| A£® | ²»´æÔÚx0¡ÊR£¬$x_0^2+{x_0}+1¡Ý0$ | B£® | ?x0¡ÊR£¬$x_0^2+{x_0}+1¡Ý0$ | ||
| C£® | ?x¡ÊR£¬x2+x+1£¼0 | D£® | ?x¡ÊR£¬x2+x+1¡Ý0 |