题目内容
6.将十进制数17转化为二进制数为( )| A. | 11110 | B. | 10101 | C. | 10011 | D. | 10001 |
分析 利用“除k取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案.
解答 解:17÷2=8…1
8÷2=4…0
4÷2=2…0
2÷2=1…0
1÷2=0…1
故17(10)=10001 (2)
故选:D.
点评 本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.
练习册系列答案
相关题目
16.已知函数y=f(x=2)是偶函数,且当x≠2时其导函数f′(x)满足(x-2)f′(x)>0,若2<a<3,则下列不等式式成立的是( )
| A. | f(2a)<f(3)<f(log2a) | B. | f(3)<f(log2a)<f(2a) | C. | f(log2a)<f(3)<f(2a) | D. | f(log2a)<f(2a)<f(3) |
14.抛物线x2=-6by的准线与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右支分别交于B、C两点,A为双曲线的右顶点,O为坐标原点,若∠AOC=∠BOC,则双曲线的离心率为( )
| A. | $\frac{2\sqrt{3}}{3}$ | B. | 3 | C. | $\frac{4\sqrt{3}}{3}$ | D. | 2$\sqrt{3}$ |
18.若f(x)=$\frac{e^x}{x}$,f'(x)为f(x)的导函数,则f'(x)=( )
| A. | f'(x)=$-\frac{e^x}{x}$ | B. | f'(x)=$\frac{{x{e^x}-{e^x}}}{x^2}$ | C. | f'(x)=$\frac{{x{e^x}+{e^x}}}{x^2}$ | D. | f'(x)=$\frac{{x{e^x}-{e^x}}}{x}$ |