题目内容
10.在△ABC中,cosA=$\frac{1}{3}$,3sinB=2sinC,且△ABC的面积为2$\sqrt{2}$,则边BC的长为( )| A. | 2$\sqrt{3}$ | B. | 3 | C. | 2 | D. | $\sqrt{3}$ |
分析 由cosA=$\frac{1}{3}$,A∈(0,π),可得sinA=$\sqrt{1-co{s}^{2}A}$.由3sinB=2sinC,且△ABC的面积为2$\sqrt{2}$,可得3b=2c,$\frac{1}{2}bc×\frac{2\sqrt{2}}{3}$=2$\sqrt{2}$,再利用余弦定理可得:a2=b2+c2-2bccosA.
解答 解:∵cosA=$\frac{1}{3}$,A∈(0,π),∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{2\sqrt{2}}{3}$,
∵3sinB=2sinC,且△ABC的面积为2$\sqrt{2}$,
∴3b=2c,$\frac{1}{2}bc×\frac{2\sqrt{2}}{3}$=2$\sqrt{2}$,
解得b=2,c=3.
∴a2=b2+c2-2bccosA=22+32-2×2×3×$\frac{1}{3}$=9,
解得a=3.
故选:B.
点评 本题考查了正弦定理余弦定理、三角形面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
1.在区间[0,2]上任取两个实数a,b,则函数f(x)=x2+ax-$\frac{1}{4}$b2+1在区间(-1,1)没有零点的概率是( )
| A. | $\frac{π}{8}$ | B. | $\frac{4-π}{4}$ | C. | $\frac{4-π}{8}$ | D. | $\frac{π}{4}$ |
15.已知$\overrightarrow{AB}$=(2,-1),$\overrightarrow{CB}$=(-2,3),则|$\overrightarrow{AC}$|=4$\sqrt{2}$.
10.同时掷两颗骰子,向上点数之和小于5的概率是( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{2}$ |