题目内容

6.已知$α∈({0,\frac{π}{2}}),β∈({\frac{π}{2},π}),sinβ=\frac{{2\sqrt{2}}}{3},sin({α+β})=\frac{7}{9}$,则sinα的值为$\frac{1}{3}$;$tan\frac{α}{2}$的值为3-2$\sqrt{2}$.

分析 由已知可求范围α+β∈($\frac{π}{2}$,$\frac{3π}{2}$),利用同角三角函数基本关系式可求cos(α+β),sinβ的值,利用角的关系α=(α+β)-β,根据两角差的正弦函数公式即可化简求值,进而可求cosα,利用同角三角函数基本关系式,降幂公式即可计算得解$tan\frac{α}{2}$的值.

解答 解:∵α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),
∴α+β∈($\frac{π}{2}$,$\frac{3π}{2}$),…1分
∴cos(α+β)=-$\sqrt{1-si{n}^{2}(α+β)}$=-$\frac{4\sqrt{2}}{9}$,…3分
∴cosβ=$\sqrt{1-si{n}^{2}β}$=-$\frac{1}{3}$,…5分
∴sinα=sin[(α+β)-β]=sin(α+β)cosβ-cos(α+β)sinβ=$\frac{7}{9}$×(-$\frac{1}{3}$)-(-$\frac{4\sqrt{2}}{9}$)×$\frac{2\sqrt{2}}{3}$=$\frac{1}{3}$.
∵cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{2\sqrt{2}}{3}$,
∴$tan\frac{α}{2}$=$\sqrt{\frac{1}{co{s}^{2}\frac{α}{2}}-1}$=$\sqrt{\frac{2}{1+cosα}-1}$=3-2$\sqrt{2}$.
故答案为:$\frac{1}{3},3-2\sqrt{2}$.

点评 本题主要考查了同角三角函数基本关系式,两角差的正弦函数公式,降幂公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网