题目内容
16.已知直线2x-y-3=0的倾斜角为θ,则sin2θ的值是( )| A. | $\frac{1}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{2}{5}$ |
分析 首先根据直线斜率求出θ的正切值,然后利用二倍角的正弦函数公式,同角三角函数基本关系式化简所求即可计算得解.
解答 解:由直线2x-y-3=0方程,得直线2x-y-3=0的斜率k=2,
∵直线2x-y-3=0的倾斜角为θ,
∴tanθ=2,
∴sin2θ=$\frac{2sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2tanθ}{1+ta{n}^{2}θ}$=$\frac{2×2}{1+{2}^{2}}$=$\frac{4}{5}$.
故选:C.
点评 本题考查直线斜率的意义,同角三角函数关系,倍角公式等三角恒等变换知识的应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
6.已知偶函数f(x)在区间[0,+∞)上是增函数,则f(-1)与f(2)的大小关系是( )
| A. | f(-1)≥f(2) | B. | f(-1)≤f(2) | C. | f(-1)>f(2) | D. | f(-1)<f(2) |
7.
某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如表所示:
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(2)从所种作物中随机选取一株,求它的年收获量Y的分布列.
| X | 1 | 2 | 3 | 4 |
| Y | 51 | 48 | 45 | 42 |
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(2)从所种作物中随机选取一株,求它的年收获量Y的分布列.
1.在复平面内,复数z的对应点为(1,1),则$\frac{2}{z}$-z2=( )
| A. | -1-3i | B. | -1+3i | C. | 1-3i | D. | 1+3i |
8.设点P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是( )
| A. | $y=\sqrt{2}x$ | B. | $y=\sqrt{3}x$ | C. | y=2x | D. | y=4x |