题目内容

12.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点
(1)求证:平面ABE⊥平面BEF
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角θ∈[$\frac{π}{4}$,$\frac{π}{3}$],求a的取值范围.

分析 (1)建立坐标系,设PA=a,求出各向量的坐标,利用数量积证明AB⊥BF,AB⊥BE,故而AB⊥平面BEF,于是平面ABE⊥平面BEF;
(2)求出两平面的法向量,计算法向量的夹角,根据二面角的范围列不等式组解出a的范围.

解答 (1)证明:以A为原点,以AB,AD,AP为坐标轴建立空间直角坐标系,设PA=a,
则A(0,0,0),B(1,0,0),F(1,2,0,),E(1,1,$\frac{a}{2}$),
∴$\overrightarrow{AB}$=(1,0,0),$\overrightarrow{BE}$=(0,1,$\frac{a}{2}$),$\overrightarrow{BF}$=(0,2,0),
∴$\overrightarrow{AB}•\overrightarrow{BE}$=0,$\overrightarrow{AB}•\overrightarrow{BF}$=0,
∴AB⊥BE,AB⊥BF,又BE∩BF=B,
AB⊥平面BEF,又AB?平面ABE,
∴平面ABE⊥平面BEF.
(2)解:由(1)知$\overrightarrow{BD}$=(-1,2,0),$\overrightarrow{BE}$=(0,1,$\frac{a}{2}$),
设平面BDE的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}=0}\\{\overrightarrow{n}•\overrightarrow{BE}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{-x+2y=0}\\{y+\frac{a}{2}z=0}\end{array}\right.$,令z=1得$\overrightarrow{n}$=(-a,-$\frac{a}{2}$,1),
∵PA⊥平面ABCD,∴$\overrightarrow{m}$=(0,0,1)是平面ABCD的一个法向量,
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1}{1×\sqrt{\frac{{5a}^{2}}{4}+1}}$,
∵平面EBD与平面ABCD所成锐二面角θ∈[$\frac{π}{4}$,$\frac{π}{3}$],
∴$\frac{1}{2}$≤$\frac{1}{1×\sqrt{\frac{{5a}^{2}}{4}+1}}$≤$\frac{\sqrt{2}}{2}$,
解得:$\frac{2\sqrt{5}}{5}$≤a≤$\frac{2\sqrt{15}}{5}$.

点评 本题考查了面面垂直的判定,空间向量与二面积的计算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网