题目内容

已知向量
   1
 -1
在矩阵M=
.
1m
01
.
变换下得到的向量是
  0
 -1

(Ⅰ)求m的值;
(Ⅱ)求曲线y2-x+y=0在矩阵M-1对应的线性变换作用下得到的曲线方程.
考点:几种特殊的矩阵变换
专题:选作题,矩阵和变换
分析:(Ⅰ)由条件求得
1-m
  -1
=
  0
-1
,从而求得m 的值.
(Ⅱ)先求得M-1=
1       -1
0        1
,设曲线y2-x+y=0上任意一点(x,y)在矩阵M-1所对应的线性变换作用下的像是(x',y'),由矩阵变换的法则得
x=x′+y′
y=y′
代入曲线y2-x+y=0得y'2=x',由此得出结论.
解答: 解:(Ⅰ)因为
1       m
0       1
  1
-1
=
1-m
  -1
,所以
1-m
  -1
=
  0
-1
,即m=1(3分)
(Ⅱ)因为M=
1       1
0       1
,所以M-1=
1       -1
0        1
.…(4分)
设曲线y2-x+y=0上任意一点(x,y)在矩阵M-1所对应的线性变换作用下的像是(x',y').
x′
y′
=
1   -1
0     1
x
y
=
x-y
  y
,…(5分)
所以
x-y=x′
y=y′
x=x′+y′
y=y′
代入曲线y2-x+y=0得y'2=x'.…(6分)
由(x,y)的任意性可知,曲线y2-x+y=0在矩阵M-1对应的线性变换作用下的曲线方程为y2=x.…(7分)
点评:本小题主要考查矩阵与变换等基础知识,考查化归与转化思想,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网