题目内容

19.(1)求证:1+$\frac{1}{{3}^{2}}$+$\frac{1}{{5}^{2}}$+…+$\frac{1}{(2n-1)^{2}}$>$\frac{7}{6}$-$\frac{1}{2(2n-1)}$(n≥2)
(2)求证:$\frac{1}{4}$+$\frac{1}{16}$+$\frac{1}{36}$+…+$\frac{1}{4{n}^{2}}$<$\frac{1}{2}$-$\frac{1}{4n}$
(3)求证:$\frac{1}{2}$+$\frac{1•3}{2•4}$+$\frac{1•3•5}{2•4•6}$+…+$\frac{1•3•5…(2n-1)}{2•4•6…2n}$<$\sqrt{2n+1}$-1
(4)求证:2($\sqrt{n+1}$-1)<1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<$\sqrt{2}$($\sqrt{2n+1}$-1)

分析 (1)当n≥2时,$\frac{1}{(2n-1)^{2}}$>$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.利用“裂项求和”即可得出;
(2)当n≥2时,$\frac{1}{4{n}^{2}}$<$\frac{1}{4}$$\frac{1}{(n-1)n}$=$\frac{1}{4}(\frac{1}{n-1}-\frac{1}{n})$,利用“裂项求和”即可得出;
(3)由于$\frac{2n-1}{2n}$<$\frac{2n}{2n+1}$,T=$\frac{1•3•5…(2n-1)}{2•4•6…2n}$<$\frac{2}{3}×$$\frac{4}{5}$×…×$\frac{2(n-1)}{2n-1}$×$\frac{2n}{2n+1}$=$\frac{1}{T}$×$\frac{1}{2n+1}$,可得T<$\frac{1}{\sqrt{2n+1}}$=$\frac{2}{2\sqrt{2n+1}}$<$\frac{2}{\sqrt{2n-1}+\sqrt{2n+1}}$=$\sqrt{2n+1}$-$\sqrt{2n-1}$,再利用“累加求和”即可得出.
(4)先证明左边:利用$\frac{1}{\sqrt{n}}$=$\frac{2}{2\sqrt{n}}$>$\frac{2}{\sqrt{n}+\sqrt{n+1}}$=2$(\sqrt{n+1}-\sqrt{n})$,利用“累加求和”即可得出;
证明右边:$\frac{1}{\sqrt{n}}$<$\frac{2\sqrt{2}}{\sqrt{2n+1}+\sqrt{2n-1}}$=$\sqrt{2}$$(\sqrt{2n+1}-\sqrt{2n-1})$.利用“累加求和”即可得出.

解答 证明:(1)当n≥2时,$\frac{1}{(2n-1)^{2}}$>$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴1+$\frac{1}{{3}^{2}}$+$\frac{1}{{5}^{2}}$+…+$\frac{1}{(2n-1)^{2}}$>1+$\frac{1}{2}$$[(\frac{1}{3}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$=1+$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+1})$=$\frac{7}{6}$-$\frac{1}{2(2n-1)}$.
∴1+$\frac{1}{{3}^{2}}$+$\frac{1}{{5}^{2}}$+…+$\frac{1}{(2n-1)^{2}}$>$\frac{7}{6}$-$\frac{1}{2(2n-1)}$(n≥2).
(2)当n≥2时,$\frac{1}{4{n}^{2}}$<$\frac{1}{4}$$\frac{1}{(n-1)n}$=$\frac{1}{4}(\frac{1}{n-1}-\frac{1}{n})$,
∴$\frac{1}{4}$+$\frac{1}{16}$+$\frac{1}{36}$+…+$\frac{1}{4{n}^{2}}$<$\frac{1}{4}$+$\frac{1}{4}$$[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n-1}-\frac{1}{n})]$=$\frac{1}{4}$+$\frac{1}{4}$$(1-\frac{1}{n})$=$\frac{1}{2}-$$\frac{1}{4n}$.
(3)∵$\frac{2n-1}{2n}$<$\frac{2n}{2n+1}$,
T=$\frac{1•3•5…(2n-1)}{2•4•6…2n}$<$\frac{2}{3}×$$\frac{4}{5}$×…×$\frac{2(n-1)}{2n-1}$×$\frac{2n}{2n+1}$=$\frac{1}{T}$×$\frac{1}{2n+1}$,∴T<$\frac{1}{\sqrt{2n+1}}$=$\frac{2}{2\sqrt{2n+1}}$<$\frac{2}{\sqrt{2n-1}+\sqrt{2n+1}}$=$\sqrt{2n+1}$-$\sqrt{2n-1}$,
∴$\frac{1}{2}$+$\frac{1•3}{2•4}$+$\frac{1•3•5}{2•4•6}$+…+$\frac{1•3•5…(2n-1)}{2•4•6…2n}$<$(\sqrt{3}-1)$+$(\sqrt{5}-\sqrt{3})$+…+($\sqrt{2n+1}$-$\sqrt{2n-1}$)=$\sqrt{2n+1}$-1,
∴$\frac{1}{2}$+$\frac{1•3}{2•4}$+$\frac{1•3•5}{2•4•6}$+…+$\frac{1•3•5…(2n-1)}{2•4•6…2n}$<$\sqrt{2n+1}$-1.
(4)先证明左边:∵$\frac{1}{\sqrt{n}}$=$\frac{2}{2\sqrt{n}}$>$\frac{2}{\sqrt{n}+\sqrt{n+1}}$=2$(\sqrt{n+1}-\sqrt{n})$,
∴1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$>2$[(\sqrt{2}-1)$+$(\sqrt{3}-\sqrt{2})$+…+$(\sqrt{n+1}-\sqrt{n})]$=2$(\sqrt{n+1}-1)$.
证明右边:∵$\frac{1}{\sqrt{n}}$<$\frac{2\sqrt{2}}{\sqrt{2n+1}+\sqrt{2n-1}}$=$\sqrt{2}$$(\sqrt{2n+1}-\sqrt{2n-1})$.
∴1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<$\sqrt{2}$[($\sqrt{3}$-1)+$(\sqrt{5}-\sqrt{3})$+…+($\sqrt{2n+1}$-$\sqrt{2n-1}$)]=$\sqrt{2}$$(\sqrt{2n+1}-1)$.
综上可得:2($\sqrt{n+1}$-1)<1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<$\sqrt{2}$($\sqrt{2n+1}$-1).

点评 本题考查了不等式的证明方法、“放缩法”、不等式的性质、“累加求和”、“裂项求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网