题目内容
已知数列{an}的前n项的和为Sn=n(n+1)
(1)求证:数列{an}为等差数列;
(2)求
+
+…+
.
(1)求证:数列{an}为等差数列;
(2)求
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由an=Sn-Sn-1(n≥2)求出数列{an}的通项公式,然后直接利用等差数列的定义得答案;
(2)由已知得
=
=
-
,再由裂项相消法求得
+
+…+
.
(2)由已知得
| 1 |
| Sn |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
解答:
(1)证明:由Sn=n(n+1),
当n≥2时,
an=Sn-Sn-1=n(n+1)-(n-1)n=2n.
又a1=S1=2.
∴an=2n.
∴an+1-an=2(n+1)-2n=2为一常数.
∴数列{an}为等差数列;
(2)解:∵
=
=
-
,
∴
+
+…+
=(1-
)+(
-
)+(
-
)+…+
-
=1-
=
.
当n≥2时,
an=Sn-Sn-1=n(n+1)-(n-1)n=2n.
又a1=S1=2.
∴an=2n.
∴an+1-an=2(n+1)-2n=2为一常数.
∴数列{an}为等差数列;
(2)解:∵
| 1 |
| Sn |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
点评:本题考查由数列的前n项和求数列的通项公式,考查了裂项相消法求数列的和,是中档题.
练习册系列答案
相关题目