ÌâÄ¿ÄÚÈÝ
9£®ÒÔÏÂËĸö¹ØÓÚÔ²×¶ÇúÏßµÄÃüÌâÖУº¢ÙÉèA£¬BΪÁ½¸ö¶¨µã£¬kΪÕý³£Êý£¬|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|=k£¬Ôò¶¯µãPµÄ¹ì¼£ÎªÍÖÔ²£»
¢ÚË«ÇúÏß$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1ÓëÍÖÔ²x2+$\frac{{y}^{2}}{35}$=1ÓÐÏàͬµÄ½¹µã£»
¢Û·½³Ì2x2-5x+2=0µÄÁ½¸ù¿É·Ö±ð×÷ΪÍÖÔ²ºÍË«ÇúÏßµÄÀëÐÄÂÊ£»
¢ÜÒÑÖªÒÔFΪ½¹µãµÄÅ×ÎïÏßy2=4xÉϵÄÁ½µãA£¬BÂú×ã$\overrightarrow{AF}$=3$\overrightarrow{FB}$£¬ÔòÏÒABµÄÖеãPµ½×¼ÏߵľàÀëΪ$\frac{8}{3}$£®
ÆäÖÐÕæÃüÌâµÄÐòºÅΪ¢Û¢Ü£®
·ÖÎö ÓÉÌâÒⶨÒåÅжϢ٣»ÓÉÔ²×¶ÇúÏߵıê×¼·½³ÌÅжϽ¹µãËùÔÚ×ø±êÖáÅжϢڣ»Çó½â·½³ÌÅжϢۣ»ÀûÓÃÖ±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµÅжϢܣ®
½â´ð
½â£º¶ÔÓÚ¢Ù£¬µ±k=|AB|ʱ£¬¶¯µãPµÄ¹ì¼£ÎªÏß¶ÎAB£¬¹Ê¢Ù´íÎó
¶ÔÓÚ¢Ú£¬Ë«ÇúÏß$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1µÄ½¹µãÔÚxÖáÉÏ£¬¶øÍÖÔ²x2+$\frac{{y}^{2}}{35}$=1µÄ½¹µãÔÚyÖáÉÏ£¬¹Ê¢Ú´íÎó£»
¶ÔÓÚ¢Û£¬Çó½â·½³Ì2x2-5x+2=0£¬µÃ${x}_{1}=\frac{1}{2}$£¬x2=2£¬
¡à·½³Ì2x2-5x+2=0µÄÁ½¸ù¿É·Ö±ð×÷ΪÍÖÔ²ºÍË«ÇúÏßµÄÀëÐÄÂÊ£¬¹Ê¢ÛÕýÈ·£»
¶ÔÓڢܣ¬Èçͼ£ºÉèBF=m£¬ÓÉÅ×ÎïÏߵ͍ÒåÖª£¬AA1=3m£¬BB1=m£¬
¡à¡÷ABCÖУ¬AC=2m£¬AB=4m£¬${k}_{AB}=\sqrt{3}$£¬Ö±ÏßAB·½³ÌΪy=$\sqrt{3}$£¨x-1£©£¬
ÓëÅ×ÎïÏß·½³ÌÁªÁ¢ÏûyµÃ3x2-10x+3=0£¬
ABÖе㵽׼Ïß¾àÀëΪ$\frac{{x}_{1}+{x}_{2}}{2}+1=\frac{5}{3}+1=\frac{8}{3}$£¬¹Ê¢ÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Û¢Ü£®
µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÁËÔ²×¶ÇúÏߵ͍Òå¡¢·½³Ì¼°¼òµ¥ÐÔÖÊ£¬ÊôÖеµÌ⣮
| A£® | $\frac{1}{6}$ | B£® | $\frac{1}{5}$ | C£® | $\frac{1}{3}$ | D£® | $\frac{1}{2}$ |
| A£® | $\frac{2}{9}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{4}{9}$ | D£® | $\frac{1}{4}$ |
£¨¢ñ£©¸ù¾ÝÒÔÉÏ×ÊÁÏÍê³ÉÏÂÃæµÄ2¡Á2ÁÐÁª±í£¬Èô¾Ý´ËÊý¾ÝËãµÃK2=3.7781£¬ÔòÔÚ·¸´íµÄ¸ÅÂʲ»³¬¹ý5%µÄǰÌáÏ£¬ÄãÊÇ·ñÈÏΪ¡°ÂúÒâÓë·ñ¡±Óë¡°ÐÔ±ð¡±Óйأ¿
| ²»ÂúÒâ | ÂúÒâ | ºÏ¼Æ | |
| ÄÐ | 4 | 7 | |
| Å® | |||
| ºÏ¼Æ |
| P£¨K2¡Ýk£© | 0.100 | 0.050 | 0.010 |
| k | 2.706 | 3.841 | 6.635 |
£¨¢ó£© ¸Ã¹«Ë¾Îª¶Ô¿Í»§×ö½øÒ»²½µÄµ÷²é£¬´ÓÉÏÊö¶ÔÆä²úÆ·ÂúÒâµÄÓû§ÖÐÔÙËæ»úѡȡ2ÈË£¬ÇóÕâÁ½È˶¼ÊÇÄÐÓû§»ò¶¼ÊÇÅ®Óû§µÄ¸ÅÂÊ£®
| A£® | -3 | B£® | 3»ò-5 | C£® | -3»ò-5 | D£® | ¡À3 |