题目内容

16.用边长为48cm的正方形铁皮做一个无盖的铁盒,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成一个铁盒.则所做的铁盒容积最大时,在四角截去的小正方形的边长为(  )
A.6 cmB.8 cmC.10 cmD.12 cm

分析 设截去的小正方形的边长为x cm,铁盒的容积为 V cm3,从而可得V=x(48-2x)2(0<x<24),求导V′=12(24-x)(8-x),从而求最大值即可.

解答 解:设截去的小正方形的边长为x cm,铁盒的容积为 V cm3
由题意得,
V=x(48-2x)2(0<x<24),
V′=12(24-x)(8-x),
令V′=0,则在(0,24)内有x=8.
故当x=8时,V有最大值;
故选:B.

点评 本题考查利用导数求最大值问题,涉及长方体的体积计算,关键是列出关于x的方程.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网