题目内容

F是抛物线y2=2px(p>0)的焦点,过焦点F且倾斜角为60°的直线交抛物线与A,B两点,设|AF|=a,|BF|=b,且a>b,则
a
b
的值为
 
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设抛物线y2=2px(p>0)的准线为l,分别过点A,B作AM⊥l,BN⊥l,垂足为M,N.过点B作BC⊥AM交于点C.由抛物线的定义可得:|AM|=|AF|,|BN|=|BF|.由于AM∥x轴,∠BAC=∠AFx=60°.在Rt△ABC中,|AC|=
1
2
|AB|,化简即可得出.
解答: 解:设抛物线y2=2px(p>0)的准线为l:x=-
p
2

如图所示,分别过点A,B作AM⊥l,BN⊥l,垂足为M,N.
过点B作BC⊥AM交于点C.
则|AM|=|AF|,|BN|=|BF|.
∵AM∥x轴,
∴∠BAC=∠AFx=60°.
在Rt△ABC中,|AC|=
1
2
|AB|
又|AM|-|BN|=|AC|,
∴|AF|-|BF|=
1
2
(|AF|+|BF|),
化为|AF|=3|BF|
AF|=a,|BF|=b,且a>b,则
a
b
的值为3.
故答案为:3.
点评:本题考查了抛物线的定义、含60°角的直角三角形的性质、平行线的性质,考查了辅助线的作法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网