题目内容
设函数f(x)=x3-3x2+5x,{an}为公差不为0的等差数列,若a1+a2+…+a10=10,则f(a1)+f(a2)+…+f(a10)= .
考点:等差数列的性质
专题:等差数列与等比数列
分析:由等差数列的性质可得a1+a10=a2+a9=…=a5+a6=2,进而可得f(a1)+f(a10)为定值6,同理可得f(a2)+f(a9)=f(a3)+f(a8)=…f(a5)+f(a6)=6,进而可得答案.
解答:
解:∵等差数列中a1+a2+…+a10=10,
∴由等差数列的性质可得a1+a10=a2+a9=…=a5+a6=2,
∴f(a1)+f(a10)=a13+a103-3(a12+a102)+5(a1+a10)
=(a1+a10)(a12+a102-a1a10)-3(a12+a102)+5(a1+a10)
=2(a12+a102-a1a10)-3(a12+a102)+5×2
=-(a12+a102)-2a1a10+10
=-(a1+a10)2+2a1a10-2a1a10+10
=-4+10=6
同理可得f(a2)+f(a9)=f(a3)+f(a8)=…f(a5)+f(a6)=6,
∴f(a1)+f(a2)+…+f(a10)=5×6=30,
故答案为:30
∴由等差数列的性质可得a1+a10=a2+a9=…=a5+a6=2,
∴f(a1)+f(a10)=a13+a103-3(a12+a102)+5(a1+a10)
=(a1+a10)(a12+a102-a1a10)-3(a12+a102)+5(a1+a10)
=2(a12+a102-a1a10)-3(a12+a102)+5×2
=-(a12+a102)-2a1a10+10
=-(a1+a10)2+2a1a10-2a1a10+10
=-4+10=6
同理可得f(a2)+f(a9)=f(a3)+f(a8)=…f(a5)+f(a6)=6,
∴f(a1)+f(a2)+…+f(a10)=5×6=30,
故答案为:30
点评:本题考查等差数列的性质,涉及立方和公式的应用,得出f(a2)+f(a9)=f(a3)+f(a8)=…f(a5)+f(a6)=6是解决问题的关键,属中档题.
练习册系列答案
相关题目
已知a,θ∈R,若对于任意的实数a∈(-∞,0),使asinθ≤a,则cos(θ-
)=( )
| π |
| 6 |
A、
| ||||
B、-
| ||||
C、
| ||||
D、-
|