题目内容

6.若函数y=2sinωx(ω>0)在[-$\frac{π}{3}$,$\frac{π}{4}$]上的最小值是-2,但最大值不是2,则ω的取值范围是(  )
A.(0,2)B.[$\frac{3}{2}$,2)C.(0,$\frac{3}{2}$]D.[2,+∞)

分析 根据x∈[-$\frac{π}{3}$,$\frac{π}{4}$]求出ωx的取值范围,结合题意列出ω的不等式组,从而求出ω的取值范围.

解答 解:函数y=2sinωx(ω>0)在[-$\frac{π}{3}$,$\frac{π}{4}$]上的最小值是-2,但最大值不是2,
∴ωx的取值范围是[-$\frac{π}{3}$ω,$\frac{π}{4}$ω];
∴-$\frac{π}{3}$ω≤-$\frac{π}{2}$且$\frac{π}{4}$ω<$\frac{π}{2}$,
解得$\frac{3}{2}$≤ω<2,
∴ω的取值范围是[$\frac{3}{2}$,2).
故选:B.

点评 本题主要考查了正弦函数的最值应用问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网