ÌâÄ¿ÄÚÈÝ
20£®ÎªÁ˽ÚÄܼõÅÅ£¬Ä³µØÇø¶ÔÏļ¾Ä³Ô·ݵÄÈÕ×î¸ßÆøÎºÍÈÕÓõçÁ¿×öÁËͳ¼Æ£¬Èç±í¸ø³öÁËÈÕ×î¸ßÆøÎºÍÈÕÓõçÁ¿µÄͳ¼ÆÊý¾Ý£®£¨ÆäÖÐÆøÎÂÊÇ30¡æµÄÓÐ3Ì죬33¡æÓÐ3Ì죬35¡æÓÐ6Ì죬37¡æÓÐ3Ì죬40¡æÓÐ15Ì죩| ÈÕ×î¸ßÆøÎ£¨x¡æ£© | 30 | 33 | 35 | 37 | 40 |
| ÈÕÓõçÁ¿£¨kw•h£© | 130Íò | 134Íò | 140Íò | 145Íò | 151Íò |
£¨¢ò£©Çó³öÈÕ×î¸ßÆøÎÂx¡æÓëÈÕÓõçÁ¿£¨kw•h£©µÄÏßÐԻع鷽³Ì£¬²¢¹ÀËãÆøÎÂÊÇ39¡æÊ±µÄÈÕÓõçÁ¿£»
£¨¢ó£©¸ù¾Ý¶àÄêÆøÏóÐÅÏ¢¿ÉÖª£¬¸ÃµØÇøÕû¸öÏļ¾90Ì죬ƽ¾ùÆøÎ¿ɴï38¡æ£¬ÄÇô¸ù¾ÝËùÇóµÄÓõçÁ¿ÓëÆøÎÂÖ®¼äµÄÏßÐԻع鷽³Ì£¬Ô¤¼ÆÏļ¾µÄ×ÜÓõçÁ¿´óÔ¼ÊǶàÉÙ£®
£¨²Î¿¼¹«Ê½$\widehat{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£©
·ÖÎö £¨¢ñ£©¸ù¾Ý±íÖÐÊý¾Ý»³öÈÕ×î¸ßÆøÎºÍÈÕÓõçÁ¿µÄÉ¢µãͼ£»
£¨¢ò£©¸ù¾Ý¹«Ê½¼ÆËã$\overline{x}$Óë$\overline{y}$£¬Çó³ö$\stackrel{¡Ä}{b}$Óë$\stackrel{¡Ä}{a}$¼´¿ÉµÃÏßÐԻع鷽³Ì£¬ÀûÓûع鷽³Ì¹ÀËãÈÕÓõçÁ¿£»
£¨¢ó£©¸ù¾ÝÏßÐԻع鷽³Ì£¬¼ÆËãÏļ¾µÄ×ÜÓõçÁ¿´óÔ¼ÊǶàÉÙ£®
½â´ð ½â£º£¨¢ñ£©»³öÈÕ×î¸ßÆøÎºÍÈÕÓõçÁ¿µÄÉ¢µãͼ£¬ÈçͼËùʾ£»![]()
£¨¢ò£©$\overline{x}$=$\frac{1}{5}$£¨30+33+35+37+40£©=35£¬
$\overline{y}$=$\frac{1}{5}$£¨130+134+140+145+151£©=140£¬
¡à$\stackrel{¡Ä}{b}$=$\frac{£¨30-35£©£¨130-140£©+£¨33-35£©£¨134-140£©+¡}{{£¨30-35£©}^{2}{+£¨33-35£©}^{2}{+£¨35-35£©}^{2}{+£¨37-35£©}^{2}{+£¨40-35£©}^{2}}$=$\frac{127}{58}$¡Ö2.2£»
$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$=140-2.2¡Á35=63£¬
¡àÈÕ×î¸ßÆøÎÂx¡æÓëÈÕÓõçÁ¿£¨kw•h£©µÄÏßÐԻع鷽³ÌΪ$\stackrel{¡Ä}{y}$=2.25x+63£¬
¹ÀËãÆøÎÂÊÇ39¡æÊ±µÄÈÕÓõçÁ¿$\stackrel{¡Ä}{y}$=2.2¡Á39+63=148.8£¨Íòkw•h£©£»
£¨¢ó£©¸ù¾ÝÏßÐԻع鷽³Ì£¬Ô¤¼ÆÏļ¾µÄ×ÜÓõçÁ¿´óÔ¼ÊÇ
£¨2.2¡Á38+63£©¡Á90=13194£¨Íòkw•h£©£®
µãÆÀ ±¾Ì⿼²éÁËÉ¢µãͼÓëÏßÐԻع鷽³ÌµÄÇó·¨ÓëÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˻ͼÓë¼ÆËãÄÜÁ¦£¬ÊÇ»ù´¡ÌâÄ¿£®