题目内容

14.已知函数$f(x)=\frac{e^x}{x}+a({x-lnx})$,在$x∈({\frac{1}{2},2})$上有三个不同的极值点(e为自然对数的底数),则实数a的取值范围是(  )
A.$({-e,-\sqrt{e}})$B.$({-2\sqrt{e},-e})$C.$({-\sqrt{e},0})$D.$[-e,-\frac{e}{2})$

分析 问题转化为ex+ax=0在x∈($\frac{1}{2}$,2)有两个不同的根,且x≠=e,令g(x)=a=-$\frac{{e}^{x}}{x}$,根据函数的单调性求出a的范围即可.

解答 解:函数的定义域为x∈(0,+∞),
f′(x)=$\frac{{(e}^{x}+ax)(x-1)}{{x}^{2}}$,
由条件可知f′(x)=0在x∈($\frac{1}{2}$,2)上有三个不同的根,
即ex+ax=0在x∈($\frac{1}{2}$,2)有两个不同的根,
令g(x)=a=-$\frac{{e}^{x}}{x}$,g′(x)=-$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
x∈($\frac{1}{2}$,1)时单调递增,x∈(1,2)时单调递减,
∴g(x)max=g(1)=-e,g($\frac{1}{2}$)=-2$\sqrt{e}$,g(2)=-$\frac{1}{2}$e2
∵-2$\sqrt{e}$-(-$\frac{1}{2}$e2)>0,
∴-2$\sqrt{e}$<a<-e,
故选:B.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网