题目内容

1.设正实数x,y满足xy=$\frac{x+2y}{2x-4y}$,则实数x的最小值为$1+\sqrt{2}$.

分析 正实数x,y满足xy=$\frac{x+2y}{2x-4y}$,变形为:4xy2+(2-2x2)y+x=0,可得:$\left\{\begin{array}{l}{△=(2-2{x}^{2})^{2}-16{x}^{2}≥0}\\{\frac{2{x}^{2}-2}{4x}>0}\\{\frac{x}{4x}>0}\end{array}\right.$,解得即可得出.

解答 解:正实数x,y满足xy=$\frac{x+2y}{2x-4y}$,
变形为:4xy2+(2-2x2)y+x=0,
∴$\left\{\begin{array}{l}{△=(2-2{x}^{2})^{2}-16{x}^{2}≥0}\\{\frac{2{x}^{2}-2}{4x}>0}\\{\frac{x}{4x}>0}\end{array}\right.$,解得:x2≥3+2$\sqrt{2}$,
∴x$≥1+\sqrt{2}$.
则实数x的最小值为1+$\sqrt{2}$.
故答案为:$1+\sqrt{2}$.

点评 本题考查了一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网