题目内容
6.设i是虚数单位,则复数z=$\frac{4-3i}{i}$的虚部为( )| A. | 4i | B. | 4 | C. | -4i | D. | -4 |
分析 利用复数代数形式的乘除运算化简得答案.
解答 解:∵z=$\frac{4-3i}{i}$=$\frac{(4-3i)(-i)}{-{i}^{2}}=\frac{-3-4i}{1}=-3-4i$,
∴复数z=$\frac{4-3i}{i}$的虚部为-4.
故选:D.
点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关题目
17.设a,b∈R+,且a≠b,a+b=2,则必有 ( )
| A. | 1≤ab≤$\frac{{a}^{2}+{b}^{2}}{2}$ | B. | $\frac{{a}^{2}+{b}^{2}}{2}$<ab<1 | C. | ab<$\frac{{a}^{2}+{b}^{2}}{2}$<1 | D. | 1<ab<$\frac{{a}^{2}+{b}^{2}}{2}$ |
11.已知集合$P=\left\{{x|y=\sqrt{x+1}}\right\}$,集合$Q=\left\{{y|y=\sqrt{x+1}}\right\}$,则P与Q的关系是( )
| A. | P=Q | B. | P⊆Q | C. | Q⊆P | D. | P∩Q=∅ |
15.tan660°的值是( )
| A. | -$\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | -$\sqrt{3}$ | D. | $\sqrt{3}$ |