题目内容

12.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$则$\frac{x+1}{y}$的最大值为2.

分析 由约束条件作出可行域,然后由$\frac{x+1}{y}$的几何意义求得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x=1}\\{x-y=0}\end{array}\right.$,解得A(1,1),
设P(-1,0),
则${k}_{PA}=\frac{1-0}{1-(-1)}=\frac{1}{2}$,
则$\frac{x+1}{y}$=$\frac{1}{{k}_{PA}}=2$.
故答案为:2.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网