题目内容

10.设集合A={x|x2-5x+6<0},B={x|2x-5>0},则A∩B=(  )
A.$(-3,-\frac{5}{2})$B.$(2,\frac{5}{2})$C.$(\frac{5}{2},3)$D.$(-3,\frac{5}{2})$

分析 求出A与B中不等式的解集分别确定出A与B,找出两集合的交集即可.

解答 解:由A中不等式变形得:(x-2)(x-3)<0,
解得:2<x<3,即A=(2,3),
由B中不等式解得:x>$\frac{5}{2}$,即B=($\frac{5}{2}$,+∞),
则A∩B=($\frac{5}{2}$,3),
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网