题目内容
已知数列{an}中,a1=
,点(2an+1-an,2)在直线y=x+1上,其中n=1,2,3…
(1)求证:{an-1}为等比数列并求出{an}的通项公式;
(2)设数列{bn}的前n项和为Sn,且b1=1,Sn=
bn,令cn=an•bn,求数列{cn}的前n项和Tn.
| 1 |
| 2 |
(1)求证:{an-1}为等比数列并求出{an}的通项公式;
(2)设数列{bn}的前n项和为Sn,且b1=1,Sn=
| n+1 |
| 2 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件2an+1-an+1=2,从而2(an+1-1)=an-1,由此能证明{an-1}是以
为公比的等比数列,首项为a1-1=-
,从而得到an=-(
)n+1.
(2)Sn=
bn,Sn-1=
bn-1,两式作差,得
=
,利用累加法能求出bn=n,cn=an•bn=[-(
)n+1]•n=-(
)n•n+n,由此利用分组求和法能求出数列{cn}的前n项和Tn.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)Sn=
| n+1 |
| 2 |
| n |
| 2 |
| bn |
| bn-1 |
| n |
| n-1 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:
(1)证明:∵数列{an}中,a1=
,点(2an+1-an,2)在直线y=x+1上,
∴2an+1-an+1=2,
∴2(an+1-1)=an-1,
∴
=
,
∴{an-1}是以
为公比的等比数列,首项为a1-1=-
,
∴an=-(
)n+1.
(2)解:Sn=
bn,Sn-1=
bn-1,
两式作差,Sn-Sn-1=
bn-
bn-1,
整理,得
=
,
∴
×
×…×
=
×
×…×
,
=n,b1=1,∴bn=n,
∵cn=an•bn,
∴cn=[-(
)n+1]•n=-(
)n•n+n,
令dn=-n•(
)n,其和为Rn,
Rn=-1×
-2×(
)2-3×(
)3-…-n×(
)n,①
Rn=-1×(
)2-2×(
)3-3×(
)4-…-n×(
)n+1,
错项相减后
Rn=-(
)-(
)2-(
)3-…-(
)n+n(
)n+1
=-
+n(
)n+1
=(
)n-1+n(
)n+1,
∴Rn=(2+n)(
)n-2,
∴Tn=Rn+
=(2+n)•(
)n+
-2.
| 1 |
| 2 |
∴2an+1-an+1=2,
∴2(an+1-1)=an-1,
∴
| an+1-1 |
| an-1 |
| 1 |
| 2 |
∴{an-1}是以
| 1 |
| 2 |
| 1 |
| 2 |
∴an=-(
| 1 |
| 2 |
(2)解:Sn=
| n+1 |
| 2 |
| n |
| 2 |
两式作差,Sn-Sn-1=
| n+1 |
| 2 |
| n |
| 2 |
整理,得
| bn |
| bn-1 |
| n |
| n-1 |
∴
| bn |
| bn-1 |
| bn-1 |
| bn-2 |
| b2 |
| b1 |
| n |
| n-1 |
| n-1 |
| n-2 |
| 2 |
| 1 |
| bn |
| b1 |
∵cn=an•bn,
∴cn=[-(
| 1 |
| 2 |
| 1 |
| 2 |
令dn=-n•(
| 1 |
| 2 |
Rn=-1×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
错项相减后
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=-
| ||||
1-
|
| 1 |
| 2 |
=(
| 1 |
| 2 |
| 1 |
| 2 |
∴Rn=(2+n)(
| 1 |
| 2 |
∴Tn=Rn+
| n(n+1) |
| 2 |
| 1 |
| 2 |
| n(n+1) |
| 2 |
点评:本题考查等比数列的证明,考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目