题目内容

20.数列{an}是以a1=1为首项,以2为公差的等差数列,若数列{$\frac{1}{{{a_n}{a_{n+1}}}}$}的前n项和为Tn,则满足Tn>$\frac{100}{209}$的最小正整数n为(  )
A.9B.10C.11D.12

分析 运用裂项相消求和,即数列$\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),求和,解不等式即可确定最小的正整数n.

解答 解:数列{an}是以a1=1为首项,以2为公差的等差数列,
则an=a1+(n-1)d=2n-1;
∴$\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$,
∵Tn=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)>$\frac{100}{209}$,
∴即为2n+1>$\frac{209}{9}$,即n>$\frac{100}{9}$,
满足Tn>$\frac{100}{209}$的最小正整数n为12.
故选:D.

点评 本题考查等差数列的通项公式,考查数列求和的方法:裂项相消求和,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网