题目内容

11.若a>b>c,且a+2b+c=0,则$\frac{c}{a}$的取值范围是(-3,-$\frac{1}{3}$).

分析 先将a+2b+c=0变形为b=-$\frac{1}{2}$(a-c),代入不等式a>b,b>c,得到两个不等关系,解这两个不等式,即可求得a与c的比值关系.

解答 解:∵a+2b+c=0,
∴a>0,c<0,
∴b=-$\frac{1}{2}$(a+c),且a>0,c<0
∵a>b>c
∴a>-$\frac{1}{2}$(a+c),即c>-3a,
解得 $\frac{c}{a}$>-3,
将b=-$\frac{1}{2}$(a+c)代入b>c,得-$\frac{1}{2}$(a+c)>c,即a<-3c,
解得$\frac{c}{a}$<-$\frac{1}{3}$,
∴-3<$\frac{c}{a}$<-$\frac{1}{3}$.
故答案为:(-3,-$\frac{1}{3}$).

点评 本题考查一元一次不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.解决本题的关键是将a+2b+c=0变形构造出不等关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网