题目内容
11.若a>b>c,且a+2b+c=0,则$\frac{c}{a}$的取值范围是(-3,-$\frac{1}{3}$).分析 先将a+2b+c=0变形为b=-$\frac{1}{2}$(a-c),代入不等式a>b,b>c,得到两个不等关系,解这两个不等式,即可求得a与c的比值关系.
解答 解:∵a+2b+c=0,
∴a>0,c<0,
∴b=-$\frac{1}{2}$(a+c),且a>0,c<0
∵a>b>c
∴a>-$\frac{1}{2}$(a+c),即c>-3a,
解得 $\frac{c}{a}$>-3,
将b=-$\frac{1}{2}$(a+c)代入b>c,得-$\frac{1}{2}$(a+c)>c,即a<-3c,
解得$\frac{c}{a}$<-$\frac{1}{3}$,
∴-3<$\frac{c}{a}$<-$\frac{1}{3}$.
故答案为:(-3,-$\frac{1}{3}$).
点评 本题考查一元一次不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.解决本题的关键是将a+2b+c=0变形构造出不等关系.
练习册系列答案
相关题目
1.圆心在曲线y=$\frac{1}{x}$(x>0)上,与直线2x+y+1=0相切且面积最小的圆的方程为( )
| A. | (x-1)2+(y-2)2=5 | B. | (x-1)2+(y-1)2=5 | C. | (x-1)2+(y-2)2=25 | D. | (x-1)2+(y-1)2=25 |
19.已知$\overrightarrow{a}$=(1,1,1),$\overrightarrow{b}$=(x,-1,-1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数x=( )
| A. | -1 | B. | 1 | C. | 2 | D. | 0 |
16.设平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为非零向量,则“$\overrightarrow{a}$=$\overrightarrow{b}$”是“($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{c}$=0”的( )
| A. | 充分不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
3.已知函数f(x)=x2+sinx,则f′(0)=( )
| A. | 0 | B. | -1 | C. | 1 | D. | 3 |
20.若集合$A=\{x|\frac{2x-3}{x+1}≤1\},B=\{x||x|≤3\}$,则A∩B=( )
| A. | (-1,3] | B. | [-1,3] | C. | [-3,3] | D. | [-3,-1) |