题目内容
16.设平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为非零向量,则“$\overrightarrow{a}$=$\overrightarrow{b}$”是“($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{c}$=0”的( )| A. | 充分不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为非零向量,则“$\overrightarrow{a}$=$\overrightarrow{b}$”⇒“($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{c}$=0”;反之不成立,即可判断出关系.
解答 解:∵平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为非零向量,则“$\overrightarrow{a}$=$\overrightarrow{b}$”⇒“($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{c}$=0”;
反之不成立,由“($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{c}$=0”⇒($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{c}$,或$\overrightarrow{a}$=$\overrightarrow{b}$.
因此“$\overrightarrow{a}$=$\overrightarrow{b}$”是“($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{c}$=0”的充分不必要条件.
故选:A.
点评 本题考查了向量垂直与数量积的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
| A. | -2 | B. | 2 | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
(1)求f(x)的解析式;
(2)设函数h(x)=2f(x-$\frac{π}{12}$),x∈[$-\frac{π}{4}$,$\frac{π}{4}$],求h(x)的最大值和最小值.
| x | $-\frac{π}{4}$ | 0 | $\frac{π}{6}$ | $\frac{π}{4}$ | $\frac{π}{2}$ | $\frac{3π}{4}$ |
| f(x) | 0 | 1 | $\frac{1}{2}$ | 0 | -1 | 0 |