题目内容
19.已知$\overrightarrow{a}$=(1,1,1),$\overrightarrow{b}$=(x,-1,-1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数x=( )| A. | -1 | B. | 1 | C. | 2 | D. | 0 |
分析 根据$\overrightarrow{a}$⊥$\overrightarrow{b}$时$\overrightarrow{a}$•$\overrightarrow{b}$=0,列出方程求出x的值.
解答 解:∵$\overrightarrow{a}$=(1,1,1),$\overrightarrow{b}$=(x,-1,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=1•x+1×(-1)+1×(-1)=0,
解得x=2.
故选:C.
点评 本题考查了两向量垂直,数量积为零的应用问题,是基础题目.
练习册系列答案
相关题目
9.已知向量$\overrightarrow{a}$=(x1,y1,z1),$\overrightarrow{b}$=(x2,y2,z2),$\overrightarrow{a}$≠$\overrightarrow{b}$,设|$\overrightarrow{a}-\overrightarrow{b}$|=k,则|$\overrightarrow{a}-\overrightarrow{b}$与单位向量$\overrightarrow{i}$=(1,0,0)夹角的余弦值为( )
| A. | $\frac{{x}_{1}-{x}_{2}}{k}$ | B. | $\frac{{x}_{2}-{x}_{1}}{k}$ | C. | $\frac{|{x}_{1}-{x}_{2}|}{k}$ | D. | ±$\frac{{x}_{1}-{x}_{2}}{k}$ |