题目内容
14.$f(x)=\left\{\begin{array}{l}a{x^2}+1,x≥0\\({a^2}-1){e^{ax}},x<0\end{array}\right.$对定义域内的任意实数x都有$\lim_{△x→0}\frac{f(x+△x)-f(x)}{△x}>0$(其中△x表示自变量的改变量),则a的取值范围是$(1,\sqrt{2}]$.分析 根据导数定义得出函数在定义域上单调递增,再由分段函数单调的条件列式计算.
解答 解:根据导数定义,f'(x)=$\lim_{△x→0}\frac{f(x+△x)-f(x)}{△x}>0$,
所以,f(x)在定义域为单调递增,则f(x)在各分段都为增函数,
①当x≥0时,f(x)=ax2+1,要使函数递增,则a>0,
②当x<0时,f(x)=(a2-1)eax,要使函数递增,则$\left\{\begin{array}{l}{a>0}\\{a^2-1>0}\end{array}\right.$或$\left\{\begin{array}{l}{a<0}\\{a^2-1<0}\end{array}\right.$(舍),
综合①②得,a>1,
又$\underset{lim}{x→{0}^{+}}$f(x)≥$\underset{lim}{x→{0}^{-}}$f(x),即1≥a2-1,解得a≤$\sqrt{2}$,
所以,实数a的取值范围为(1,$\sqrt{2}$],
故答案为:(1,$\sqrt{2}$].
点评 本题主要考查了导数的定义,以及运用导数与单调性间的关系,分段函数单调性的求解,属于中档题.
练习册系列答案
相关题目
2.
一个几何体的三视图如图所示,则该几何体的体积等于( )
| A. | 8+4π | B. | 8+2π | C. | 8+$\frac{4}{3}$π | D. | 8+$\frac{2}{3}$π |
9.已知直线l∥平面α,m为平面α内任一直线,则直线l与直线m的位置关系是( )
| A. | 平行 | B. | 异面 | C. | 相交 | D. | 平行或异面 |
6.
某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:
(1)在给出的坐标系中,画出关于x、y两个相关变量的散点图.
(2)请根据上表提供的数据,用最小二乘法求出变量y关于变量x的线性回归直线方程$\hat y=\widehatbx+\hat a$.
(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克).
(参考公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{({\overline x})}^2}}}\hat$,$\hat a=\overline y-b\overline x$,$n{(\overline x)^2}=45$,$n\overline x\overline y=24$,$\sum_{i=1}^5{x_i}{y_i}=29.8$,$\sum_{i=1}^5{x_i^2}=55$.
(1)在给出的坐标系中,画出关于x、y两个相关变量的散点图.
| xi(月) | 1 | 2 | 3 | 4 | 5 |
| yi(千克) | 0.5 | 0.9 | 1.7 | 2.1 | 2.8 |
(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克).
(参考公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{({\overline x})}^2}}}\hat$,$\hat a=\overline y-b\overline x$,$n{(\overline x)^2}=45$,$n\overline x\overline y=24$,$\sum_{i=1}^5{x_i}{y_i}=29.8$,$\sum_{i=1}^5{x_i^2}=55$.
3.在△OAB中,O为直角坐标系的原点,A,B的坐标分别为A(3,4),B(-2,y),向量$\overrightarrow{AB}$与x轴平行,则向量$\overrightarrow{OA}$与$\overrightarrow{AB}$所成的余弦值是( )
| A. | -$\frac{\sqrt{3}}{5}$ | B. | $\frac{\sqrt{3}}{5}$ | C. | -$\frac{3}{5}$ | D. | $\frac{3}{5}$ |